当构建模型时,从因果视角出发,模型能够更好地适应和迁移到不同的环境,适用于各种业务场景。比如在营销策略分析中,因果推断可以帮助理解不同营销活动(如广告、促销等)对销售额的实际影响,从而优化营销预算分配。因此,因果推断也是研究的一大热点,在众多场景中都有应用。
当前,因果推断的实际应用主要集中在五个核心领域:因果发现、识别因果量、因果效应估计、反事实推断和策略学习。其中,因果发现和因果效应估计是当前较为主流且易于实现的应用场景,而反事实推断仍然是业界面临的挑战。
尽管这些挑战有待突破,但相对来说也给我们提供了很多潜在的创新点,是个找灵感发论文的好方向。为方便同学们获取idea,我整理了12个最新前沿的因果推断研究成果,可参考的方法以及创新点我也做了简单介绍,希望能给各位的论文添砖加瓦。
论文和代码需要的同学看文末
Bayesian Active Causal Discovery with Multi-Fidelity Experiments
方法;论文研究了在多保真度预测下进行主动因果发现的问题,其中更高保真度的实验更精确但更昂贵,而低保真度的实验更便宜但不够准确。
作者正式定义了多保真度主动因果发现的任务,并设计了一个概率模型来解决这个问题。具体来说,首先引入了一个基于互信息的获取函数来确定应该在哪个保真度下干预哪个变量,然后提出了一个级联模型来捕捉不同保真度的预测之间的相关性。
除了以上基本框架,作者还将其扩展到批量干预的场景中。作者发现广泛使用和高效的贪婪方法背后的理论基础在问题中并不成立。为了解决这个问题,作者引入了一个称为ϵ-次模的新概念,并设计了一个基于约束的保真度模型来在理论上验证贪婪方法。
创新点:
-
首次在因果推断领域引入了多保真度(multi-fidelity)主动因果发现(active causal discovery)的任务。
-
提出了一个贝叶斯框架,包括基于互信息的实验设计和级联保真度模型,可以有效处理多保真度的实验。
-
将模型扩展到批量干预场景,并引入了一种基于约束的保真度模型来理论上验证贪心方法的有效性。
Finding Counterfactually Optimal Action Sequences in Continuous State Spaces
方法:论文主要研究了在连续状态下的顺序决策过程中如何找到反事实最优的行动序列。作者通过引入A*算法来解决这个问题,该算法能够在一定的时间内找到最优解,但运行时间取决于具体的问题实例。通过使用真实的临床数据进行实验证明,该方法在实践中非常高效,并且有潜力为领域专家提供有趣的洞察,以便进一步研究和检查。
创新点:
-
本文介绍了在具有连续状态和离散动作的马尔可夫决策过程中找到反事实最优动作序列的问题,并将其形式化为一个NP难问题。
-
作者开发了一种基于A *算法的搜索方法,可以在环境动态具有Lipschitz连续性的情况下,保证返回问题的最优解。
-
通过使用真实的临床数据进行实验,作者发现他们的方法在实践中非常高效,并且有潜力为领域专家提供有趣的见解。
A Causal Framework for Decomposing Spurious Variations
方法:论文介绍了一种分解因果模型中虚假变化的通用工具包。具体来说,作者引入了部分绑架子模型的概念,并介绍了部分绑架和预测的过程。该过程可以用于分解马尔可夫模型和半马尔可夫模型中的虚假变化。此外,作者还提出了识别这种虚假分解的充分条件,并在真实数据集上进行了实证分析。
创新点:
-
引入了部分被识别的子模型的概念,以及部分被识别和预测的过程,为因果模型中的虚假变动分解提供了新的方法。这个过程允许在马尔可夫模型和半马尔可夫模型中对虚假变动进行分解,从而为对虚假变动进行分解提供了新的工具和方法。
-
首次证明了在拓扑顺序中进行虚假分解的可识别性的充分条件,并给出了计算虚假分解的表达式。这个结果解决了虚假分解在实践中的可识别性问题,并为使用观测数据计算虚假分解提供了理论支持。
Invariant Anomaly Detection under Distribution Shifts: A Causal Perspective
方法:论文研究了异常检测(AD)中的分布转移问题,并通过利用因果推断的工具,提出了一种新的方法来增加异常检测模型对不同类型分布转移的鲁棒性。研究通过推导出一种正则化项,实现了对环境的部分分布不变性,从而提高了模型在分布转移下的性能。
创新点:
-
研究者提出了部分条件不变性正则化(PCIR)术语,用于在分布转移下提高异常检测模型的鲁棒性。
-
通过对实验结果的分析,研究者发现在引入PCIR的情况下,所有测试模型的性能都得到了提升,特别是在协变量移位和域移位的情况下。
-
PCIR方法在处理协变量移位时表现出更好的鲁棒性,同时提高了模型在分布内的性能。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“因果推断12”获取论文+代码
码字不易,欢迎大家点赞评论收藏