结合创新!ResNet+Transformer,高性能低参数,准确率达99.12%

今天给各位介绍一个发表高质量论文的好方向:ResNet结合Transformer

ResNet因其深层结构和残差连接,能够有效地从图像中提取出丰富的局部特征。同时,Transformer的自注意力机制能够捕捉图像中的长距离依赖关系,为模型提供全局上下文信息。

这种策略结合了两者分别在处理空间、序列数据上的优势,强化了模型特征提取和全局理解方面的能力,让模型在保持强大的局部分析能力的同时,也能够利用全局信息来进一步提升性能。 比如高性能低参数的SpikingResformer,以及准确率高达99.12%的EfficientRMT-Net。

本文整理了9种ResNet结合Transformer的创新方案,并简单提炼了可参考的方法以及创新点,希望能给各位的论文添砖加瓦。

论文以及开源代码需要的同学看文末

SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks

方法:本文介绍了一种新型的脉冲自注意机制,名为双脉冲自注意(DSSA),以及基于该机制的脉冲视觉Transformer架构——SpikingResformer。DSSA通过双脉冲转换生成脉冲自注意,完全基于脉冲驱动且与SNN兼容。SpikingResformer结合了ResNet多阶段设计和提出的脉冲自注意机制,实现了更好的性能和更低的参数和能耗。

### 将ViT与CNN结合用于图像分类的方法 为了实现更高效的图像分类模型,可以考虑将卷积神经网络(CNN)和视觉Transformer(ViT)的优点结合起来。一种有效的方式是在架构设计阶段引入跨注意力机制以及多尺度特征提取。 #### 跨模态融合策略 通过采用交叉注意模块来促进不同层次之间信息交互的有效性已经被证明是非常有益处的做法之一[^2]。具体来说,在构建混合型网络结构时,可以在早期层使用传统的二维卷积操作捕捉局部纹理细节;而在较深层则利用自注意力机制处理全局依赖关系并增强语义理解能力。 #### 多尺度特征表示 有效的特征融合对于学习多层次的表征至关重要。可以通过多种方式实现这一点,比如级联连接、短路跳跃路径或是更为复杂的门控单元等技术手段来进行细粒度的信息交换。这有助于提高最终决策的质量,并使得模型能够更好地适应不同类型的任务需求。 #### 实现示例 下面给出了一种简单的基于PyTorch框架下的代码片段作为概念验证: ```python import torch.nn as nn from torchvision import models from transformers import ViTModel class HybridNet(nn.Module): def __init__(self, num_classes=1000): super(HybridNet, self).__init__() # Load pretrained ResNet model for CNN part resnet = models.resnet50(pretrained=True) modules=list(resnet.children())[:-1] self.cnn_features = nn.Sequential(*modules) # Initialize Vit Model vit_model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') self.vit_features = vit_model # Classifier head combining both features self.classifier = nn.Linear(2048 + 768, num_classes) def forward(self, x_cnn, x_vit): cnn_out = self.cnn_features(x_cnn).view(-1, 2048) vit_out = self.vit_features(pixel_values=x_vit)['last_hidden_state'][:,0,:].squeeze() combined = torch.cat((cnn_out,vit_out), dim=-1) out = self.classifier(combined) return out ``` 此段代码展示了如何创建一个名为`HybridNet`的新类继承自`torch.nn.Module`, 它内部集成了预训练好的ResNet50 (代表CNN部分) 和 HuggingFace库中的VIT base版本 (代表transformer 部分),并通过线性变换将其输出拼接起来送入全连接层完成分类任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值