今天给各位介绍一个发表高质量论文的好方向:ResNet结合Transformer。
ResNet因其深层结构和残差连接,能够有效地从图像中提取出丰富的局部特征。同时,Transformer的自注意力机制能够捕捉图像中的长距离依赖关系,为模型提供全局上下文信息。
这种策略结合了两者分别在处理空间、序列数据上的优势,强化了模型特征提取和全局理解方面的能力,让模型在保持强大的局部分析能力的同时,也能够利用全局信息来进一步提升性能。 比如高性能低参数的SpikingResformer,以及准确率高达99.12%的EfficientRMT-Net。
本文整理了9种ResNet结合Transformer的创新方案,并简单提炼了可参考的方法以及创新点,希望能给各位的论文添砖加瓦。
论文以及开源代码需要的同学看文末
SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks
方法:本文介绍了一种新型的脉冲自注意机制,名为双脉冲自注意(DSSA),以及基于该机制的脉冲视觉Transformer架构——SpikingResformer。DSSA通过双脉冲转换生成脉冲自注意,完全基于脉冲驱动且与SNN兼容。SpikingResformer结合了ResNet多阶段设计和提出的脉冲自注意机制,实现了更好的性能和更低的参数和能耗。