为提高模型在信号处理、图像分析、时间序列预测等多个领域的性能和准确性,我们考虑将小波变换与其他技术相结合。
这种结合利用了小波变换的多尺度分析能力,以及其他技术的优势,有效捕捉信号的局部特征,从而实现特征的高效提取与融合,不仅提升了模型的识别精度和鲁棒性,还优化了计算效率,帮助我们更合理地利用资源。
目前,这种结合主要有以下几个常见思路:+Transformer、+Mamba、+注意力机制、+GNN、+CNN...创新空间还是很大的,可参考的顶会成果也比较多。
本文挑选了45个最新的小波变换结合创新方案,方便有论文需求的同学找idea,开源代码基本都有,不想多花时间找参考的可直接拿。
全部论文+开源代码需要的同学看文末
结合Transformer
Spiking Wavelet Transformer
方法:本文提出了一种新型的尖峰神经网络架构——SWformer,它通过结合小波变换和Transformer架构的优势,有效捕获图像的时空频率特征,显著提高了脉冲神经网络(SNNs)在静态和神经形态数据集上的准确性和参数效率。