深度学习领域有个很好出高区的研究方向:PINN+LSTM。这是个创新性很高的结合策略,而且PINN和LSTM原本就都是顶会顶刊的投稿热门,两相结合更是1+1>2,可以说是我们搞创新发论文的好选择。
原理上,这种结合融合了PINN在物理规律建模方面的卓越能力,还有LSTM在时序数据处理上的优势,可以让模型的预测能力和泛化性能原地起飞。实用性上,PINN+LSTM尤为适合那些同时包含物理规律和时序依赖性数据的任务,比如故障诊断、医学图像分析,研究前景非常可观。
本文整理了8篇PINN+LSTM最新论文,大部分都是一区二区成果,且有代码,需要参考的同学可以无偿获取~
全部论文+开源代码需要的同学看文末
A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
方法:论文提出的结合物理信息神经网络和长短期记忆网络的模型,在预测短纤维/聚合物纳米复合材料的力学行为方面表现出色。通过将物理定律嵌入模型中,确保了热力学一致性,同时利用LSTM捕捉材料变形的历史信息,显著提高了模型的预测精度和泛化能力。