PINN+LSTM大突破!中科院一区&二区get,满足课题需求!

深度学习领域有个很好出高区的研究方向:PINN+LSTM。这是个创新性很高的结合策略,而且PINN和LSTM原本就都是顶会顶刊的投稿热门,两相结合更是1+1>2,可以说是我们搞创新发论文的好选择。

原理上,这种结合融合了PINN在物理规律建模方面的卓越能力,还有LSTM在时序数据处理上的优势,可以让模型的预测能力和泛化性能原地起飞。实用性上,PINN+LSTM尤为适合那些同时包含物理规律和时序依赖性数据的任务,比如故障诊断、医学图像分析,研究前景非常可观。

本文整理了8篇PINN+LSTM最新论文,大部分都是一区二区成果,且有代码,需要参考的同学可以无偿获取~

全部论文+开源代码需要的同学看文末

A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites

方法:论文提出的结合物理信息神经网络和长短期记忆网络的模型,在预测短纤维/聚合物纳米复合材料的力学行为方面表现出色。通过将物理定律嵌入模型中,确保了热力学一致性,同时利用LSTM捕捉材料变形的历史信息,显著提高了模型的预测精度和泛化能力。

<think>好的,用户想找结合PINNLSTM的代码示例。首先,我需要回忆PINN(物理信息神经网络)和LSTM的基本概念。PINN通常结合物理方程到损失函数中,用于解决偏微分方程等问题,而LSTM擅长处理时间序列数据。结合两者可能是为了处理具有时间依赖性的物理系统,比如动态系统的预测。 接下来,我需要检查现有的引用资料。用户提供的引用中,引用[1]是关于PiNN库的,但可能不涉及LSTM。引用[2]提到物理信息LSTM用于延迟补偿,这可能接近用户的需求。引用[3]是LSTM的介绍,但没有结合PINN。 用户需要代码示例,但直接可用的资源可能不多,可能需要自己构建个简单的示例。首先,考虑如何将物理方程整合到LSTM的训练中。例如,在时间序列预测中,除了数据损失,还要添加物理约束的损失项。 然后,我需要确保代码结构正确,使用PyTorch或TensorFlow。假设用户熟悉其中个框架,这里选择PyTorch,因为它在科研中常用。LSTM的网络结构需要设计,输出可能用于预测下个时间步,同时物理方程的残差需要计算并加入损失函数。 可能的挑战包括如何有效地结合时间序列数据和物理约束,以及平衡不同损失项的权重。此外,需要确保梯度正确计算,特别是在物理残差部分。例如,使用自动微分来计算物理方程的导数。 最后,检查是否满足用户的所有要求,包括格式要求:行内公式用$...$,独立公式用$$...$$,使用中文回答,生成相关问题等。确保引用正确,比如引用[2]提到物理信息LSTM,可能在代码示例后引用。</think>### 结合PINNLSTM的代码实现思路 **物理信息神经网络(PINN)** 通过将物理方程嵌入神经网络损失函数实现物理约束,**LSTM** 则擅长处理时间序列数据的长期依赖关系。两者的结合常用于时空物理场预测(如流体动力学、热传导等问题)。以下是基于PyTorch的简化实现框架: ```python import torch import torch.nn as nn class PINN_LSTM(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 1) # 预测物理量(如温度、速度) def forward(self, x): out, (h_n, c_n) = self.lstm(x) return self.fc(out) def physics_loss(y_pred, t, nu=0.1): # 计算物理方程残差(以维Burgers方程为例) dy_dt = torch.autograd.grad(y_pred, t, grad_outputs=torch.ones_like(y_pred), create_graph=True)[0] dy_dx = torch.autograd.grad(y_pred, x, grad_outputs=torch.ones_like(y_pred), create_graph=True)[0] residual = dy_dt + y_pred*dy_dx - nu*torch.autograd.grad(dy_dx, x, grad_outputs=torch.ones_like(dy_dx), create_graph=True)[0] return torch.mean(residual**2) # 训练流程 model = PINN_LSTM(input_dim=3, hidden_dim=64) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) for epoch in range(1000): pred = model(X_train) # X_train包含时空坐标(t,x)和输入特征 data_loss = nn.MSELoss()(pred, y_train) phy_loss = physics_loss(pred, X_train[:, :, 0]) # 假设t是第个特征 total_loss = data_loss + 0.1*phy_loss # 加权平衡损失项[^2] optimizer.zero_grad() total_loss.backward() optimizer.step() ``` #### 关键实现要点: 1. **时空编码**:输入特征需包含时间$t$和空间坐标$x$,例如$X = [t, x, u_{prev}]$ 2. **物理残差计算**:通过自动微分(`torch.autograd.grad`)获取偏导数$ \frac{\partial u}{\partial t} $和$ \frac{\partial u}{\partial x} $ 3. **损失函数设计**:数据驱动损失(MSE)与物理约束损失(PDE残差)加权求和 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值