只做注意力机制怕是不够了,想要高分得加快速傅里叶变换!

快速傅里叶变换FFT,信号处理的经典算法,通过结合学术热点注意力机制,可以有效解决传统CNN在长程依赖建模、计算效率优化等核心问题上的局限性,应用扩展性高,尤其适合多模态融合等复杂任务。

这方向目前已在ICLR等顶会中频繁出现,微软等也提出过SpectFormer,在各CV任务中取得了SOTA性能!可见对论文er来说,无疑是个创新性高,顶会接受度好,适合发论文的研究方向,推荐有论文需求的同学关注。

为方便大家了解最新前沿进展,我整理了12篇快速傅里叶变换+注意力机制论文(有代码),从这些成果来看,这方向的研究仍处于快速发展期,大家如果感兴趣那就抓紧上车啦。

全部论文+开源代码需要的同学看文末

SpectFormer: Frequency and Attention is what you need in a Vision Transformer

方法:论文提出了一种名为 SpectFormer的新型视觉Transformer架构,通过结合快速傅里叶变换(FFT)和多头自注意力机制(MHSA),在图像识别任务中实现了更好的性能。

创新点:

  • 提出 SpectFormer 架构,结合频谱层(基于快速傅里叶变换)和多头自注意力层。

  • 在架构中先使用频谱层捕捉局部特征,再用注意力层建模全局依赖。

  • 实现了在 ImageNet 等数据集上的性能提升,达到新的 SOTA。

The FFT Strikes Again: An Efficient Alternative to Self-Attention

方法:论文提出了一种名为FFTNet的方法,利用快速傅里叶变换(FFT)实现高效的全局信息混合,并结合自适应频谱滤波和非线性变换,以O(n log n)的复杂度替代传统的自注意力机制。

创新点:

  • 提出 FFTNet,使用快速傅里叶变换(FFT)实现 O(n log n) 复杂度的全局信息混合。

  • 引入自适应频谱滤波器,动态突出重要频率分量。

  • 在频域和时域应用非线性变换,增强模型的表达能力。

Multi-scale fast Fourier transform based attention network for remote-sensing image super-resolution

方法:论文提出了一种基于快速傅里叶变换(FFT)和注意力机制的多尺度超分辨率网络(MSFFTAN),通过FFT提取全局信息和局部细节,并利用注意力机制增强小目标的重建能力,从而显著提升遥感图像超分辨率的效果。

创新点:

  • 提出基于FFT的多尺度注意力网络(MSFFTAN),处理遥感图像中的多尺度目标。

  • 设计FFT残差块,同时提取局部细节和全局结构。

  • 引入局部-全局通道注意力块,增强小目标的重建效果。

Non-Stationary Time Series Forecasting Based on Fourier Analysis and Cross Attention Mechanism

方法:论文提出了一种基于快速傅里叶变换(FFT)和交叉注意力机制的时间序列预测框架AEFIN,利用FFT提取季节性和趋势特征,并通过交叉注意力机制增强稳定与不稳定成分间的信息共享,从而提高非平稳时间序列的预测精度。

创新点:

  • 引入交叉注意力机制,增强时间序列中稳定和不稳定成分之间的信息共享。

  • 结合傅里叶分析网络和多层感知机,深入挖掘不稳定成分中的季节性和趋势特征。

  • 设计新的损失函数,融合时域和频域的稳定性约束,提升预测的准确性和鲁棒性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值