在我们写论文时,深度聚类可以作为数据预处理步骤,帮助我们组织和理解数据集。在论文的实验阶段,深度聚类的结果也可以用作定量和定性分析的一部分。例如,通过展示聚类结果的可视化,我们可以直观地展示自己的方法是如何改善了数据的分离度或发现了有意义的群组。
对苦论文久已的我们来说,掌握并进一步探索深度聚类方法显得尤为重要。
所以这次我又爆肝汇总了71篇深度聚类相关的顶会论文,包括最新的研究成果,还贴上了pytorch&TensorFlow复现代码,希望能为同学们的论文主题方法、创新研究提供支持和帮助。
论文和复现代码需要的同学看文末
1.Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment(CVPR 2023)
深度不完整多视角聚类与跨视角部分样本和原型对齐
「简述:」多视角聚类通常需要不同视角的数据都是完整的。但在现实中,由于各种原因,我们经常只能获取到部分数据,这就给聚类带来了难题。现有的解决方法有缺陷:它们试图让不同视角的相同数据看起来完全一样,这可能忽视了视角间的差异;而且,当缺少某些视角的数据时,得到的结果可能会有偏差。为了解决这个问题,本文提出了一种新的方法——跨视角部分样本和原型对齐网络(CPSPAN),它能更好地处理不完整数据的问题。实验显示,这个方法比现有的方法效果更好。
2.On the Effects of Self-supervision and Contrastive Alignment in Deep Multi-view Clustering(CVPR 2023)
关于自监督和对比对齐在深度多视角聚类中的效果研究
「简述:」自监督学习是深度多视角聚类的重要部分,但不同方法的发展差异可能拖慢了进度。本文提出了一个统一的深度多视角聚类框架Deep-MVC,它包含了许多最新方法。通过这个框架,作者发现对比学习在对齐表示时的缺陷,并证明这会影响簇的分离性,尤其在视角多的情况下更糟。基于这些发现,作者开发了新的自监督方法。实验结果显示,对比对齐会降低多视角数据集的性能,所有方法都能从自监督中受益,而该新方法在多个数据集上表现更好。
3.DivClust: Controlling Diversity in Deep Clustering(CVPR 2023)
控制深度聚类中的多样性
「简述:」聚类是机器学习的重要研究主题,深度学习在这方面取得了很大的成功。但是,现有的深度聚类方法没有考虑到如何有效地为一个数据集生成多个不同的分区。这对于共识聚类很重要,因为它能提供比单一聚类更好的结果。为了解决这个问题,作者提出了DivClust,这是一种可以添加到现有深度聚类框架中的损失函数,用来生成具有所需多样性的多个聚类结果。通过实验表明,该方法在不同的数据和框架上都能有效地控制多样性,并且计算成本很低。