函数的极限:如何通过 δ 和 ϵ 来定义一个连续的函数

连续的定义

维基百科给出的定义:

连续函数(英语:Continuous function)是指函数在数学上的属性为连续。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。

  • 所以不要直观地认为,一个函数看起来没有很突变的拐点就一定连续,这种理解是不对的。

严格的定义是:对于任意的 ϵ > 0 \epsilon >0 ϵ>0 ,存在 δ > 0 \delta>0 δ>0 ∣ x − x 0 ∣ < δ |x-x_0|<\delta xx0<δ,有 ∣ f ( x ) − f ( x 0 ) ∣ < ϵ |f(x)-f(x_0)|<\epsilon f(x)f(x0)<ϵ 那么这个函数就是连续的。

  • 这可以看做是一种彼此之间的对抗,A 说:对于函数 f ( x ) f(x) f(x) x 0 x_0 x0 处的取值,我给出一个很小的数 ϵ \epsilon ϵ f ( x 0 ) f(x_0) f(x0) 及其附近很近的点都得在这个 ϵ \epsilon ϵ 划定的窄带内 [ f ( x 0 ) − ϵ , f ( x 0 ) + ϵ ] [f(x_0)-\epsilon, f(x_0)+\epsilon] [f(x0)ϵ,f(x0)+ϵ] 我才判定你这个函数在 x 0 x_0 x0 附近是没有突变的。
  • B 说:行吧,我给你找一个同样很小的数 δ \delta δ 我能够证明 [ x 0 − δ , x 0 + δ ] [x_0-\delta, x_0+\delta] [x0δ,x0+δ] 范围内所有的数,他们的 f ( x ) f(x) f(x) 都在你划定的窄带 ϵ \epsilon ϵ 范围之内。
  • A 说:行,你只要找到这个 δ \delta δ 我就认可你。

关于 ϵ \epsilon ϵ δ \delta δ 的解释

  • 这两个都是非常小的值,但是一旦选定某个 ϵ \epsilon ϵ 之后,你可以认为他是个定值,那么你的任务就是针对这个定值选一个合适的 δ \delta δ 来证明你的函数确实是连续的
  • 比如我现在有个函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2 我要证明在 x = 0 x=0 x=0 这一点连续,首先假设我选了个 ϵ = 0.1 \epsilon=0.1 ϵ=0.1 那么现在 [ f ( x ) − ϵ , f ( x ) + ϵ ] [f(x)-\epsilon, f(x)+\epsilon] [f(x)ϵ,f(x)+ϵ] 就是窄带的的范围,就是 [ − 0.1 , 0.1 ] [-0.1, 0.1] [0.10.1]。所以你接下来选的 x 0 x_0 x0 值都落在 [ x − δ , x + δ ] [x-\delta, x+\delta] [xδ,x+δ] 之间,并用这些 x 0 x_0 x0 对应的 f ( x 0 ) f(x_0) f(x0) 来证明这些 f ( x 0 ) f(x_0) f(x0) 全部落在 ϵ \epsilon ϵ 划定的窄带中 ,现在如果我选了 δ = 0.05 \delta=0.05 δ=0.05 那么当 x 0 ∈ [ − 0.05 , 0.05 ] x_0\in [-0.05, 0.05] x0[0.05,0.05] 对应的 f ( x 0 ) f(x_0) f(x0) 的取值范围是 [ 0 , 0.0025 ] [0, 0.0025] [0,0.0025] 而这个范围也确实小于 ϵ \epsilon ϵ 所划定的 [ − 0.1 , 0.1 ] [-0.1, 0.1] [0.1,0.1] 的窄带内
  • 所以以上例子至少证明了 f ( x ) f(x) f(x) 这个函数在 ϵ = 0.1 \epsilon=0.1 ϵ=0.1 δ = 0.05 \delta=0.05 δ=0.05 的情况下是连续的
  • 这里只是给出一个直观的例子来看,为什么要用 ϵ , δ \epsilon, \delta ϵ,δ 这么一组值来判定函数的连续性

不连续的函数范例

  • f ( x ) = s i n ( 1 x ) f(x)=sin(\frac{1}{x}) f(x)=sin(x1) 这个函数就是不连续的,如果我们将它在 0-1 的范围内的图画出来,是这个样子:
    在这里插入图片描述
  • 再进一步,如果我们画出它在 x = [ 0 , 0.1 ] x=[0,0.1] x=[0,0.1] 范围内的图:
    在这里插入图片描述
  • 再进一步 x = [ 0 , 0.0001 ] x=[0,0.0001] x=[0,0.0001] 范围内的图
    在这里插入图片描述
  • 你会发现,无论你的 δ \delta δ 取多小,他的 x x x 对应的值都会在这个范围内剧烈震荡,也就是说没有任何一个 δ \delta δ 能保证这个 f ( x ) f(x) f(x) 收敛到 [ f ( x ) − ϵ , f ( x ) + ϵ ] [f(x)-\epsilon, f(x)+\epsilon] [f(x)ϵ,f(x)+ϵ]
  • 究其原因是 s i n sin sin 中包含一个 1 x \frac{1}{x} x1 而这个 1 x \frac{1}{x} x1 在越趋近于 0 0 0 的位置震动值越大,而且增速越快,这就表示着外面嵌套一个 s i n sin sin 之后,就越靠近零整个 f ( x ) f(x) f(x) 的值震荡幅度就越大越密集。所以他永远不可能收敛到一个点,因此这个函数在 x = 0 x=0 x=0 附近是不连续的。
  • 但是他在 0 0 0 之后的表现都是连续的
    在这里插入图片描述
### (ϵ,δ)-差分隐私概述 当 δ=0 时,随机机制 \(M\) 提供严格意义上的 ϵ-差分隐私[^1]。然而,在实际应用中,允许少量高置信度下的偏差,即 δ>0 的情况更为常见,这被称为近似差分隐私或 (ϵ,δ)-差分隐私。 #### 概念解释 (ϵ,δ)-差分隐私放宽了对于极小概率事件的要求,使得算法可以在几乎不影响整体隐私保障的前提下更灵活地处理数据查询请求。这里 ϵ 表征最大泄露程度,而 δ 则表示这种超出预期泄漏发生的可能性大小。 #### 实现方法 一种常见的实现方式是在原始统计结果上加入拉普拉斯噪声或者指数分布噪声来掩盖个体差异的影响。具体来说: ```python import numpy as np def add_laplace_noise(data, epsilon, sensitivity): scale = sensitivity / epsilon noise = np.random.laplace(loc=0, scale=scale, size=data.shape) return data + noise ``` 此函数展示了如何向给定的数据集 `data` 添加服从拉普拉斯分布的噪音以满足特定参数设定下的差分隐私需求。其中 `epsilon` 是隐私预算,决定了所期望达到的隐私级别;`sensitivity` 反映了单个样本变化可能引起的最大影响范围[^3]。 #### 应用场景 在现实世界的应用案例里,科技巨头们已经广泛采用了此类技术用于收集用户反馈而不侵犯个人隐私。例如,苹果公司在 iOS macOS 平台上部署了本地化的差分隐私方案,用来改进表情符号预测、键盘输入法等功能的同时确保用户的个人信息得到妥善保护。同样地,谷歌也借助这项技术从 Chrome 浏览器中获取大量匿名化后的用户体验报告,帮助优化产品性能服务质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值