Bag of features——计算机视觉

1.原理

Bag of words模型最初被用在文本分类中,将文档表示成特征矢量。它的基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。
简单说就是将每篇文档都看成一个袋子(因为里面装的都是词汇,所以称为词袋,Bag of words即因此而来),然后根据袋子里装的词汇对其进行分类。如文档中猪、马、牛、羊、山谷、土地、拖拉机这样的词汇多些,而银行、大厦、汽车、公园这样的词汇少些,我们就倾向于判断它是一篇描绘乡村的文档,而不是描述城镇的。
根据每个单词在文本中出现的权重,便可构造单词的频率直方图。词表就相当于直方图的基,新来要表述的文档向这个基上映射。
Bag-of-Features模型仿照文本检索领域的Bag-of-Words方法,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。使用某种聚类算法(如K-means)将局部特征进行聚类,每个聚类中心被看作是词典中的一个视觉词汇(Visual Word),相当于文本检索中的词,视觉词汇由聚类中心对应特征形成的码字(code word)来表示(可看当为一种特征量化过程)。所有视觉词汇形成一个视觉词典(Visual Vocabulary),对应一个码书(code book),即码字的集合,词典中所含词的个数反映了词典的大小。图像中的每个特征都将被映射到视觉词典的某个词上,这种映射可以通过计算特征间的距离去实现,然后统计每个视觉词的出现与否或次数,图像可描述为一个维数相同的直方图向量,即Bag-of-Features。
在这里插入图片描述
Bag-of-Features更多地是用于图像分类或对象识别。在上述思路下对训练集提取Bag-of-Features特征,在某种监督学习(如:SVM)的策略下,对训练集的Bag-of-Features特征向量进行训练,获得对象或场景的分类模型;对于待测图像,提取局部特征,计算局部特征与词典中每个码字的特征距离,选取最近距离的码字代表该特征,建立一个统计直方图,统计属于每个码字的特征个数,即为待测图像之Bag-of-Features特征;在分类模型下,对该特征进行预测从实现对待测图像的分类。

实现检索的过程同分类的过程无本质的差异,更多的是细节处理上的差异:
1、局部特征提取;
2、构建视觉词典;
3、生成原始BOF特征;
4、引入TF-IDF权值:
TF-IDF是一种用于信息检索的常用加权技术,在文本检索中,用以评估词语对于一个文件数据库中的其中一份文件的重要程度。词语的重要性随着它在文件中出现的频率成正比增加,但同时会随着它在文件数据库中出现的频率成反比下降。TF的主要思想是:如果某个关键词在一篇文章中出现的频率高,说明该词语能够表征文章的内容,该关键词在其它文章中很少出现,则认为此词语具有很好的类别区分度,对分类有很大的贡献。IDF的主要思想是:如果文件数据库中包含词语A的文件越少,则IDF越大,则说明词语A具有很好的类别区分能力。
词频(Term Frequency,TF)指的是一个给定的词语在该文件中出现的次数。如:tf = 0.030 ( 3/100 )表示在包括100个词语的文档中, 词语’A’出现了3次。
逆文档频率(Inverse Document Frequency,IDF)是描述了某一个特定词语的普遍重要性,如果某词语在许多文档中都出现过,表明它对文档的区分力不强,则赋予较小的权重;反之亦然。如:idf = 13.287 ( log (10,000,000/1,000) )表示在总的10,000,000个文档中,有1,000个包含词语’A’。
最终的TF-IDF权值为词频与逆文档频率的乘积。

5、对查询图像生成同样的带权BOF特征;
6、查询:初步是通过余弦距离衡量,至于建立索引的方法还未学习到,望看客指点。

Issues
1、使用k-means聚类,除了其K和初始聚类中心选择的问题外,对于海量数据,输入矩阵的巨大将使得内存溢出及效率低下。有方法是在海量图片中抽取部分训练集分类,使用朴素贝叶斯分类的方法对图库中其余图片进行自动分类。另外,由于图片爬虫在不断更新后台图像集,重新聚类的代价显而易见。
2、字典大小的选择也是问题,字典过大,单词缺乏一般性,对噪声敏感,计算量大,关键是图象投影后的维数高;字典太小,单词区分性能差,对相似的目标特征无法表示。
3、相似性测度函数用来将图象特征分类到单词本的对应单词上,其涉及线型核,塌方距离测度核,直方图交叉核等的选择。
4、将图像表示成一个无序局部特征集的特征包方法,丢掉了所有的关于空间特征布局的信息,在描述性上具有一定的有限性。为此, Schmid[2]提出了基于空间金字塔的Bag-of-Features。
5、Jégou[7]提出VLAD(vector of locally aggregated descriptors),其方法是如同BOF先建立出含有k个visual word的codebook,而不同于BOF将一个local descriptor用NN分类到最近的visual word中,VLAD所采用的是计算出local descriptor和每个visual word(c­i)在每个分量上的差距,将每个分量的差距形成一个新的向量来代表图片。
Resources
Two bag-of-words classifiers(Matlab)
Code for Vocabulary tree based image search(C++)
matlab+VC 实现Bag of features
Bag of Words/Bag of Features的Matlab源码
一个用BoW|Pyramid BoW+SVM进行图像分类的Matlab Demo
Bag-Of-Words中K-Means聚类的效率优化
aMMAI BLOG
Visual Wordsを用いた類似画像検索
bayonを使って画像からbag-of-keypointsを求める

转自:http://hi.baidu.com/hj11yc/item/1c08ac29db90480242634ace

2 代码及结果

2.1数据集

在这里插入图片描述

2.2 代码

2.2.1 创建词汇并保存

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift

#获取图像列表
imlist = get_imlist('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\')
nbr_images = len(imlist)
print('nbr_images:',nbr_images)

#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#提取文件夹下图像的sift特征
for i in range(nbr_images):
    sift.process_image(imlist[i], featlist[i])
    
#生成词汇
voc = vocabulary.Vocabulary('Image')
voc.train(featlist, 200, 10)#调用了PCV的vocabulary.py中的train函数

#保存词汇
with open('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\vocabulary.pkl', 'wb') as f:
    pickle.dump(voc, f)#将生成的词汇保存到vocabulary.pkl(f)中
print ('vocabulary is:', voc.name, voc.nbr_words)

2.2.2 添加图像并创建图像索引

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
from sqlite3 import dbapi2 as sqlite
from PCV.tools.imtools import get_imlist

#获取图像列表
imlist = get_imlist('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\')
nbr_images = len(imlist)

#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#载入词汇
with open('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)
    
#创建索引
indx = imagesearch.Indexer('testImaAdd.db',voc)
indx.create_tables()

#遍历所有的图像,并将它们的特征投影到词汇上
for i in range(nbr_images)[:110]:
    locs,descr = sift.read_features_from_file(featlist[i])
    indx.add_to_index(imlist[i],descr)
    
#提交到数据库
indx.db_commit()
con = sqlite.connect('testImaAdd.db')
print (con.execute('select count (filename) from imlist').fetchone())
print (con.execute('select * from imlist').fetchone())

2.2.3 检索

# -*- coding: utf-8 -*-
import pickle
from PCV.localdescriptors import sift
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist

#载入图像列表
imlist = get_imlist('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\')
nbr_images = len(imlist)

#载入特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#载入词汇
with open('F:\\PycharmProjects\\Test\\ch07_ImageSearch\\data7\\vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)
src = imagesearch.Searcher('testImaAdd.db',voc)

#查询图像索引和查询返回的图像数
q_ind = 42
nbr_results = 10

# 常规查询(按欧式距离对结果排序)
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]]
print ('top matches (regular):', res_reg)
# load image features for query image

#载入查询图像特征
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)
# RANSAC model for homography fitting

#用单应性进行拟合建立RANSAC模型
model = homography.RansacModel()
rank = {}
# load image features for result

#载入候选图像的特征
for ndx in res_reg[1:]:
    locs,descr = sift.read_features_from_file(featlist[ndx])  # because 'ndx' is a rowid of the DB that starts at 1
    # get matches
    matches = sift.match(q_descr,descr)
    ind = matches.nonzero()[0]
    ind2 = matches[ind]
    tp = homography.make_homog(locs[:,:2].T)
    # compute homography, count inliers. if not enough matches return empty list
    try:
        H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)
    except:
        inliers = []
    # store inlier count
    rank[ndx] = len(inliers)
# sort dictionary to get the most inliers first
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ('top matches (homography):', res_geom)

# 显示查询结果
imagesearch.plot_results(src,res_reg[:5]) #常规查询
imagesearch.plot_results(src,res_geom[:5]) #重排后的结果

2.3 结果

测试图片1
在这里插入图片描述
结果
在这里插入图片描述
测试图片2
在这里插入图片描述

结果
在这里插入图片描述

测试图片3
在这里插入图片描述
结果
在这里插入图片描述

2.4 小结

sift的生成特别慢,基于BOW的图像检索有一定的优势,检测出的结果相对理想,但其不足之处也显而易见。当k较小时,颜色特征占比较主要部分。当k过大时,却又混合在一起,显得都一样。所以并不是越大越好,或者是越小越好。而且它完全没有考虑到特征之间的位置关系,这对于人理解图片是很有必要的。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值