jdk:1.7 segment数组+hashEntry数组+链表实现
jdk版本:1.8:hashEntry+数组+红黑树实现
1、基本参数
//**1、最大容量** hashmap的最大容量也是这个,菜鸟一面被问到了
private static final int MAXIMUM_CAPACITY = 1 << 30;
//数组默认为16
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//float浮点数,LOAD_FACTOR为final 不可更改
private static final float LOAD_FACTOR = 0.75f;
2、初始化1
也就是说不是你输入什么就是什么容量,内部还有一个算法优化用户的输入。(防止用户输入参数太差)
//逻辑:如果init>max的一半,则返回max,否则返回tableSizeFor(init + (initialCapacity >>> 1) + 1));
public ConcurrentHashMap(int init) {
if (init < 0)
throw new IllegalArgumentException();
int cap = ((init >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(init + (init >>> 1) + 1));
this.sizeCtl = cap; //`sizeCtl` 表示容量
}
//c=2返回2,c=3返回4,c=9返回16
//tableSizeFor 方法通过一系列位操作,将输入值 c 转换为大于或等于 c 的最小 2 的幂次方。这是为了确保哈希表的数组大小总是 2 的幂次方,从而优化哈希分布和查找性能。
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
初始化2
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
//非常神奇啊,传入的loadFactor不会改变装填因子,但是会改变传入的容量参数,影响最终容量
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
3、sizeCtl
不太理解
sizeCtl
是 ConcurrentHashMap
中一个非常重要且复杂的控制字段,其作用有很多个。
addCount()里面判断是否要扩容是和sizeCtl比较,而不是和装填因子比较。为什么使用 sizeCtl
而不是直接使用负载因子?
- 简化计算:
- 通过将负载因子的计算隐式地包含在
sizeCtl
中,可以避免每次插入或删除元素时重新计算负载因子,从而减少了计算开销。
- 通过将负载因子的计算隐式地包含在
- 并发控制:
- 使用
sizeCtl
可以有效地协调多个线程同时进行扩容操作。负值表示正在扩容,并且包含扩容的状态信息。这样,可以避免多个线程重复触发扩容。
- 使用
- 性能优化:
- 在高并发环境下,频繁访问和修改共享变量(如负载因子)会带来性能瓶颈。通过使用
sizeCtl
,可以减少这种共享变量的访问次数,从而提高性能。
- 在高并发环境下,频繁访问和修改共享变量(如负载因子)会带来性能瓶颈。通过使用
// Unsafe mechanics
private static final long SIZECTL;
//初始化map时候,
this.sizectl = cap; //cap为容量
//比如
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
在扩容期间:
当扩容开始时,sizeCtl 被设置为一个负值,表示当前参与扩容的线程数量。这样其他线程可以知道表正在扩容并可以协同进行扩容操作。
4、put 重点
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
//1、数据检查
if (key == null || value == null) throw new NullPointerException();
//2、求key哈希
int hash = spread(key.hashCode());
int binCount = 0; //记录遍历的节点数,可以用于判断是否要链表转化为红黑树
for (Node<K,V>[] tab = table;;) { //死循环
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) //检查 table 是否初始化
tab = initTable();
//使用哈希值计算索引 i 并检查该位置是否为空。如果为空,使用 CAS 操作插入新节点,并跳出循环。
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED) // MOVEDd标志用于判断是否已经节点迁移
//当一个桶(bin)中的所有节点都被迁移到新的数组中后,原来的位置上会放置一个特殊的转发节点,表示这个桶已经处理完毕。此时,转发节点的 hash 字段会被设置为 MOVED(即 -1)。
tab = helpTransfer(tab, f);//协助迁移
else { //如果碰撞了 需要使用synchronized,放弃cas,f是table那个碰撞节点
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) { // 经典的双重检查,防止当前线程获取table锁之前,tabAt(tab, i)被其它线程改变了
if (fh >= 0) {// 哈希值>=0代表是链表,<0代表是红黑树
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) { // 三比较,hashcode==hashcode,key==key,key.equals(key)
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { // 红黑树
Node<K,V> p;
binCount = 2; //binCount 被初始化为 2,因为红黑树中的节点数计算方式不同于链表。 具体原因我不知道
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) { // 判断是否要扩容 TREEIFY_THRESHOLD=8
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount); //计数 里面通过cas维护元素个数。
return null;
}
总结:
- 判断key value是否合法 判null
- 求key哈希
- 判断table是否初始化,如果没有就初始化
- 找到key哈希在table中的位置,判断是否为null
- 如果是Null则cas直接添加节点
- 如果碰撞了 需要使用synchronized(f){},放弃cas,f是table那个碰撞节点
- 如果f.hash>=0,则说明是链表,遍历查找,当(hashhash && keykey && key.equals(key))的时候返回元素。下一个节点为null还没有找到,则插入节点
- 如果f.hash<0, 则说明是红黑树,遍历查找。找不到就插入。
- 判断是否要转化为红黑树
- 调用addCount()计算map总的元素个数,内部通过cas来实现。
- 这里面会检查table要不要扩容
**5、remove(Object key) **和put差不多
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null) // 空直接返回 没得删
break;
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else { //不空则锁起来 再遍历 找到就删
V oldVal = null;
boolean validated = false;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { // hash>=0 链表
validated = true;
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
else if (pred != null)
pred.next = e.next;
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null //找不到
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) { // 计数
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
6、get(Object key)
public V get(Object key) {
// 定义一些局部变量
Node<K,V>[] tab;
Node<K,V> e, p;
int n, eh;
K ek;
// 计算键的哈希值,并进行哈希值扩散以减少碰撞
int h = spread(key.hashCode());
// 如果哈希表不为空并且哈希表长度大于0
if ((tab = table) != null && (n = tab.length) > 0 &&
// 计算哈希表索引,取出对应位置的节点
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果找到的节点的哈希值等于目标哈希值
if ((eh = e.hash) == h) {
// 并且键也相等(引用相等或 equals 相等),则返回该节点的值
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 如果节点的哈希值小于0,表示该节点是一个特殊节点(如红黑树节点或转移节点)
else if (eh < 0)
// 调用 find 方法在该节点中查找目标键对应的值
return (p = e.find(h, key)) != null ? p.val : null;
// 否则,遍历该链表中的所有节点
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
// 如果没有找到,返回 null
return null;
}