ConcurrentHashMap详解 什么时候CAS什么时候synchronized

jdk:1.7 segment数组+hashEntry数组+链表实现

jdk版本:1.8:hashEntry+数组+红黑树实现

1、基本参数

//**1、最大容量**  hashmap的最大容量也是这个,菜鸟一面被问到了
private static final int MAXIMUM_CAPACITY = 1 << 30;

//数组默认为16
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

//float浮点数,LOAD_FACTOR为final 不可更改
private static final float LOAD_FACTOR = 0.75f;

2、初始化1

也就是说不是你输入什么就是什么容量,内部还有一个算法优化用户的输入。(防止用户输入参数太差)  
//逻辑:如果init>max的一半,则返回max,否则返回tableSizeFor(init + (initialCapacity >>> 1) + 1)); 
public ConcurrentHashMap(int init) {
        if (init < 0)
            throw new IllegalArgumentException();
        int cap = ((init >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(init + (init >>> 1) + 1));
        this.sizeCtl = cap;    //`sizeCtl` 表示容量
}
    
 //c=2返回2,c=3返回4,c=9返回16
//tableSizeFor 方法通过一系列位操作,将输入值 c 转换为大于或等于 c 的最小 2 的幂次方。这是为了确保哈希表的数组大小总是 2 的幂次方,从而优化哈希分布和查找性能。
 private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

初始化2

 public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
     
     	//非常神奇啊,传入的loadFactor不会改变装填因子,但是会改变传入的容量参数,影响最终容量
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

3、sizeCtl 不太理解

sizeCtlConcurrentHashMap 中一个非常重要且复杂的控制字段,其作用有很多个。

addCount()里面判断是否要扩容是和sizeCtl比较,而不是和装填因子比较。为什么使用 sizeCtl 而不是直接使用负载因子?

  1. 简化计算
    • 通过将负载因子的计算隐式地包含在 sizeCtl 中,可以避免每次插入或删除元素时重新计算负载因子,从而减少了计算开销。
  2. 并发控制
    • 使用 sizeCtl 可以有效地协调多个线程同时进行扩容操作。负值表示正在扩容,并且包含扩容的状态信息。这样,可以避免多个线程重复触发扩容。
  3. 性能优化
    • 在高并发环境下,频繁访问和修改共享变量(如负载因子)会带来性能瓶颈。通过使用 sizeCtl,可以减少这种共享变量的访问次数,从而提高性能。
// Unsafe mechanics
    private static final long SIZECTL;
//初始化map时候,
	this.sizectl = cap; //cap为容量
	//比如
  public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

在扩容期间:

当扩容开始时,sizeCtl 被设置为一个负值,表示当前参与扩容的线程数量。这样其他线程可以知道表正在扩容并可以协同进行扩容操作。

4、put 重点

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //1、数据检查
        if (key == null || value == null) throw new NullPointerException();
        
        //2、求key哈希
        int hash = spread(key.hashCode());
        int binCount = 0;  //记录遍历的节点数,可以用于判断是否要链表转化为红黑树
        
        for (Node<K,V>[] tab = table;;) {  //死循环
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)  //检查 table 是否初始化
                tab = initTable();
            //使用哈希值计算索引 i 并检查该位置是否为空。如果为空,使用 CAS 操作插入新节点,并跳出循环。
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { 
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED) // MOVEDd标志用于判断是否已经节点迁移
                //当一个桶(bin)中的所有节点都被迁移到新的数组中后,原来的位置上会放置一个特殊的转发节点,表示这个桶已经处理完毕。此时,转发节点的 hash 字段会被设置为 MOVED(即 -1)。
                tab = helpTransfer(tab, f);//协助迁移
            else {   //如果碰撞了  需要使用synchronized,放弃cas,f是table那个碰撞节点
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) { // 经典的双重检查,防止当前线程获取table锁之前,tabAt(tab, i)被其它线程改变了
                        if (fh >= 0) {// 哈希值>=0代表是链表,<0代表是红黑树
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {  // 三比较,hashcode==hashcode,key==key,key.equals(key)
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { // 红黑树
                            Node<K,V> p;
                            binCount = 2;  //binCount 被初始化为 2,因为红黑树中的节点数计算方式不同于链表。 具体原因我不知道
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {   // 判断是否要扩容 TREEIFY_THRESHOLD=8
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);  //计数 里面通过cas维护元素个数。
        return null;
    }

总结:

  1. 判断key value是否合法 判null
  2. 求key哈希
  3. 判断table是否初始化,如果没有就初始化
  4. 找到key哈希在table中的位置,判断是否为null
    1. 如果是Null则cas直接添加节点
    2. 如果碰撞了 需要使用synchronized(f){},放弃cas,f是table那个碰撞节点
      1. 如果f.hash>=0,则说明是链表,遍历查找,当(hashhash && keykey && key.equals(key))的时候返回元素。下一个节点为null还没有找到,则插入节点
      2. 如果f.hash<0, 则说明是红黑树,遍历查找。找不到就插入。
    3. 判断是否要转化为红黑树
  5. 调用addCount()计算map总的元素个数,内部通过cas来实现。
    1. 这里面会检查table要不要扩容

**5、remove(Object key) **和put差不多

 final V replaceNode(Object key, V value, Object cv) {
        int hash = spread(key.hashCode());
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null)    // 空直接返回 没得删
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {          //不空则锁起来 再遍历 找到就删
                V oldVal = null;
                boolean validated = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {  // hash>=0 链表
                            validated = true;
                            for (Node<K,V> e = f, pred = null;;) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                        oldVal = ev;
                                        if (value != null)
                                            e.val = value;
                                        else if (pred != null)
                                            pred.next = e.next;
                                        else
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null //找不到
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null)
                                        p.val = value;
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {     // 计数
                    if (oldVal != null) {
                        if (value == null)
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

6、get(Object key)

public V get(Object key) {
    // 定义一些局部变量
    Node<K,V>[] tab; 
    Node<K,V> e, p; 
    int n, eh; 
    K ek;

    // 计算键的哈希值,并进行哈希值扩散以减少碰撞
    int h = spread(key.hashCode());

    // 如果哈希表不为空并且哈希表长度大于0
    if ((tab = table) != null && (n = tab.length) > 0 &&

        // 计算哈希表索引,取出对应位置的节点
        (e = tabAt(tab, (n - 1) & h)) != null) {

        // 如果找到的节点的哈希值等于目标哈希值
        if ((eh = e.hash) == h) {

            // 并且键也相等(引用相等或 equals 相等),则返回该节点的值
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }

        // 如果节点的哈希值小于0,表示该节点是一个特殊节点(如红黑树节点或转移节点)
        else if (eh < 0)
            // 调用 find 方法在该节点中查找目标键对应的值
            return (p = e.find(h, key)) != null ? p.val : null;

        // 否则,遍历该链表中的所有节点
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }

    // 如果没有找到,返回 null
    return null;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值