计算机视觉第一次博客—使用pycharm进行图像处理

这篇博客介绍了计算机视觉的基础知识,通过PyCharm进行图像处理,包括图像的像素概念,直方图、直方图均衡化和高斯滤波的理论与代码实现,以及实验中遇到的版本和中文字符问题的解决方案。
摘要由CSDN通过智能技术生成

计算机视觉第一次博客—使用pycharm进行图像处理

一,什么是图像?

图像都是由像素(pixel)构成的,即图像中的小方格,这些小方格都有一个明确的位置和被分配的色彩数值,而这些一小方格的颜色和位置就决定该图像所呈现出来的样子。像素是图像中的最小单位,每一个点阵图像包含了一定量的像素,这些像素决定图像在屏幕上所呈现的大小。

img

二,图像处理之直方图,直方图均衡化,高斯滤波
2.1.1直方图

直方图是数值数据分布的精确图形表示。 这是一个连续变量(定量变量)的概率分布的估计,并且被卡尔·皮尔逊(Karl Pearson)首先引入。它是一种条形图。

# -- coding: utf-8 --
from PIL import Image
from pylab import *
from matplotlib.font_manager import FontProperties

font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14)
im = array(Image.open('C:\\Python\\1.pictures\\1.jpg').convert('L'))  # 打开图像,并转成灰度图像

figure()
subplot(121)
gray()
contour(im, origin='image')
axis('equal')
axis('off')
title(u'图像轮廓', fontproperties = font)

subplot(122)
hist(im.flatten(), 128)
title(u'图像直方图', fontproperties = font)
plt.xlim([0, 260])
plt.ylim([0, 11000])

show()

2.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值