计算机视觉第八次作业——BOF图像检索

BOF图像检索

一,实验要求

1.构造不小于 100张图片的数据集
2.针对数据集,做SIFT特 征提取
3.根据SIFT特征提取结果,采用k-means算法学习“视觉词典.(visual vocabulary)”,其中维度至少满足4个量级(比如10, 50, 100, 1000, 5000 )
4.根据IDF原理,计算每个视觉单词的权
5.针对数据库中每张图片的特征集,根据视觉词典进行量化
以及TF-IDF解算。每张图片转化成特征向量
6.对于输入的检索图像(非数据库中图片),计算SIFT特征,.并根据TF-IDF转化成频率直方图/特征向量
7.构造检索图像特征到数据库图像的倒排表,快速索引相关候选匹配图像集
8.针对候选匹配图像集与检索图像进行直方图/特征匹配

二.BOF图像检索原理

Bag of features(Bof)一种是用于图像和视频检索的算法,此算法的神奇之处,就在于对于不同角度,光照的图像,基本都能在图像库中正确检索。

2.1 Bag of Words 模型

要了解「Bag of Feature」,首先要知道「Bag of Words」。
「Bag of Words」 是文本分类中一种通俗易懂的策略。一般来讲,如果我们要了解一段文本的主要内容,最行之有效的策略是抓取文本中的关键词,根据关键词出现的频率确定这段文本的中心思想。比如:如果一则新闻中经常出现「iraq」、「terrorists」,那么,我们可以认为这则新闻应该跟伊拉克的恐怖主义有关。而如果一则新闻中出现较多的关键词是「soviet」、「cuba」,我们又可以猜测这则新闻是关于冷战的(见下图)。
img

「Bag of words」中的 words ,它们是区分度较高的单词。根据这些 words ,我们就可以快速识别出文章内容,并对文章进行分类。
而「Bag of Feature」算法与其大同小异,只是我们抽出的“关键词word”是图像中的关键特征。

2.2 Bag of Feature算法

首先我们要找到图像中的关键词,而且这些关键词必须具备较高的区分度。实际过程中,通常会采用SIFT特征。

特征提取


img

特征聚类:

提取完特征后,我们会采用一些聚类算法对这些特征向量进行聚类。最常用的聚类算法是 k-means。至于 k-means 中的 k 如何取,要根据具体情况来确定。另外,由于特征的数量可能非常庞大,这个聚类的过程也会非常漫长。
聚类完成后,我们就得到了这 k 个向量组成的视觉词典。

img

转化直方图:

上一步训练得到的字典,是为了这一步对图像特征进行量化。对于一幅图像而言,我们可以提取出大量的SIFT特征点,但这些特征点仍然缺乏代表性。因此,这一步的目标,是根据字典重新提取图像的高层特征。
具体做法是,对于图像中的每一个SIFT特征,都可以在字典中找到一个最相似的 ,这样,我们可以统计一个 k 维的直方图,代表该图像的SIFT特征在字典中的相似度频率。
img

三.代码实现

实验环境: python2.7
配置好sift以及PCV文件,若还没配置sift可以看我之前的博客: sift特征匹配
以及准备好实验的数据集。

3.1 开始创建词汇

在开始之前,我们需要配置好SIFT文件,将PCV代码文件放到要运行的代码的目录下;
然后开始提取特征,k-means聚类生成词汇:
这里k-means聚类时 voc.train 方法中可以自定义不同数量的聚类中心和子采样个数,针对不同数据集可进行调优

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift

#获取图像列表
imlist = get_imlist('JPEG/')
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#提取文件夹下图像的sift特征
for i in range(nbr_images):
    sift.process_image(imlist[i], featlist[i])

#生成词汇
voc = vocabulary.Vocabulary('ukbenchtest')
voc.train(featlist, 1000, 10)
#保存词汇
# saving vocabulary
with open('JPEG/vocabulary.pkl', 'wb') as f:
    pickle.dump(voc, f)
print ('vocabulary is:', voc.name, voc.nbr_words)

shift特征匹配并进行kmeans聚类得到视觉词典(一个pkl文件)
在这里插入图片描述
在这里插入图片描述

3.2图像索引:建立数据库并添加图像
# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
from sqlite3 import dbapi2 as sqlite
from PCV.tools.imtools import get_imlist

#获取图像列表
imlist = get_imlist('JPEG/')
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

# load vocabulary
#载入词汇
with open('JPEG/vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)
#创建索引
indx = imagesearch.Indexer('testImaAdd3.db',voc)
indx.create_tables()
# go through all images, project features on vocabulary and insert
    #遍历所有的图像,并将它们的特征投影到词汇上
for i in range(nbr_images)[:1000]:
    locs,descr = sift.read_features_from_file(featlist[i])
    indx.add_to_index(imlist[i],descr)
# commit to database
#提交到数据库
indx.db_commit()

con = sqlite.connect('testImaAdd3.db')
print (con.execute('select count (filename) from imlist').fetchone())
print (con.execute('select * from imlist').fetchone())

可得到一个数据库文件testmaAdd3:

在这里插入图片描述

3.3 测试图片索引

因单词中不包含特征的位置信息,所以使用单应性对靠前的结果重排可以提高准确度:

# -*- coding: utf-8 -*-
import pickle
from PCV.localdescriptors import sift
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist

# load image list and vocabulary
#载入图像列表
imlist = get_imlist('JPEG/')
nbr_images = len(imlist)
#载入特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#载入词汇
with open('JPEG/vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)

src = imagesearch.Searcher('testImaAdd3.db',voc)

# index of query image and number of results to return
#查询图像索引和查询返回的图像数
q_ind = 0
nbr_results = 20

# regular query
# 常规查询(按欧式距离对结果排序)
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]]
print ('top matches (regular):', res_reg)

# load image features for query image
#载入查询图像特征
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)

# RANSAC model for homography fitting
#用单应性进行拟合建立RANSAC模型
model = homography.RansacModel()
rank = {}

# load image features for result
#载入候选图像的特征
for ndx in res_reg[1:]:
    locs,descr = sift.read_features_from_file(featlist[ndx-1])  # because 'ndx' is a rowid of the DB that starts at 1
    # get matches
    matches = sift.match(q_descr,descr)
    ind = matches.nonzero()[0]
    ind2 = matches[ind]
    tp = homography.make_homog(locs[:,:2].T)
    # compute homography, count inliers. if not enough matches return empty list
    try:
        H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)
    except:
        inliers = []
    # store inlier count
    rank[ndx] = len(inliers)

# sort dictionary to get the most inliers first
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ('top matches (homography):', res_geom)

# 显示查询结果
imagesearch.plot_results(src,res_reg[:8]) #常规查询
imagesearch.plot_results(src,res_geom[:8]) #重排后的结果

常规查询以及重排结果显示:

测试一
在这里插入图片描述
结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

测试二
在这里插入图片描述
结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四,实验小结

本次实验的因为数据太少,数据集为100张,从结果看,字典太少了,单词区分性能差,相似的目标特征无法表示。还有就是我的数据集选景太多了,所以检索的图片都是不相关的(猜想)。我们要想获得好的匹配效果,需要图像特征比较明显,或者相同图像的数据集较多,因为图片库大有利于特征聚类,当图片数量较少,图像特征不多的情况下,每个聚类的中特征点个数也就几十个。这对于统计分类来说,结果不够可信,误差也较大。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值