keras用cpu加速_具有Tensorflow后端的Keras可以随意使用CPU或GPU吗?

一个相当可分的方法是使用

import tensorflow as tf

from keras import backend as K

num_cores = 4

if GPU:

num_GPU = 1

num_CPU = 1

if CPU:

num_CPU = 1

num_GPU = 0

config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,

inter_op_parallelism_threads=num_cores,

allow_soft_placement=True,

device_count = {'CPU' : num_CPU,

'GPU' : num_GPU}

)

session = tf.Session(config=config)

K.set_session(session)

在这里,通过 booleans GPU 和 CPU ,我们通过严格定义允许Tensorflow会话访问的GPU和CPU的数量来指示我们是否想要使用GPU或CPU运行我们的代码 . 变量 num_GPU 和 num_CPU 定义此值 . num_cores 然后通过 intra_op_parallelism_threads 和 inter_op_parallelism_threads 设置可供使用的CPU核心数 .

intra_op_parallelism_threads 变量指示允许计算图中单个节点中的并行操作使用(内部)的线程数 . 而 inter_ops_parallelism_threads 变量定义了可在计算图(inter)的节点之间进行并行操作的线程数 .

allow_soft_placement 允许在满足以下任何条件的情况下在CPU上运行操作:

该操作没有GPU实现

没有已知或已注册的GPU设备

需要与来自CPU的其他输入共存

所有这些都是在我的类的构造函数中执行任何其他操作之前,并且可以与我使用的任何模型或其他代码完全分离 .

注意:这需要安装 tensorflow-gpu 和 cuda / cudnn ,因为该选项用于使用GPU .

参考文献:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值