Newton-Cotes 公式及代码

简介

Newton-Cotes 公式是指在等距节点下使用 Lagrange 插值多项式建立的数值求积公式。
设将求积区间 [a, b] 划分为 n 等分,选取等分点
x i = a + i h , h = b − a n , i = 0 , 1 , 2 , ⋅ ⋅ ⋅ , n x_i = a + ih , h=\frac{b-a}{n}, i = 0, 1, 2, · · · , n xi=a+ihh=nbai=0,1,2,,n

作为求积节点构造求积公式
  ∫ a b f ( x ) d x ≈ ( b − a ) ∑ i = 0 n λ i f ( x i ) \ \int_a^b{f\left( x \right) dx\approx \left( b-a \right) \sum_{i=0}^n{\lambda _if\left( x_i \right)}}  abf(x)dx(ba)i=0nλif(xi)

这种求积公式称为 Newton-Cotes 公式
其公式求积系数如下:
在这里插入图片描述

实例

在这里插入图片描述

代码

#include<iostream>
using namespace std;
#define MAXSIZE 7
double a,b,h,core[100],f[100];
int n;
double c[MAXSIZE][MAXSIZE+2 ] = {{2, 1,1}, {6, 1, 4,1}, {8, 1, 3,3,1}, {90, 7,
32, 12,32,7}, {288, 19, 75, 50,50,75,19}, {840, 41, 216, 27, 272,27,216,41}, 
{17280, 751, 3577,1323, 2989,2989,1323,3577,751}};

void input()
{
	cout<<"输入积分区间:"<<endl;
	cin>>a>>b;
	cout<<"输入想要将区间几等分:"<<endl;
	cin>>n; 
	cout<<"输入横坐标对应的纵坐标的值:"<<endl; 
	h = (b-a)/n;
	
	for(int i=0;i<=n;i++)
	{
		cout<<"x["<<i<<"] = " << a + i * h <<"   y["<<i<<"] = ";
		cin>>f[i]; 
	}
 }  
double cau()
{
	double sum=0;
	for(int i=0;i<=n;i++)
	{ 
		double x = c[n-1][i+1]  ; 
		sum += x * f[i]; 
	}
	sum = sum / c[n-1][0] * (b-a) ;
	return sum;
} 
int main()
{
	input();
	double re = cau()   ;
	cout<<"输出结果:"<<re<<endl;
	return 0;
 } 

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值