《数值分析》-- Newton-Cotes公式


一、Cotes系数

在这里插入图片描述

  • 梯形公式
    在这里插入图片描述
    在这里插入图片描述
  • Simpson公式
    在这里插入图片描述
    在这里插入图片描述
  • 柯特斯公式
    在这里插入图片描述

二、Newton-Cotes公式

2.1 定义

在这里插入图片描述
注意:
在这里插入图片描述

2.2 截断误差

在这里插入图片描述

2.3 代数精度

  • 问题
    作为插值型求积公式,n 阶Newton-Cotes公式至少具有 n 次代数精度,而实际的代数精度是否可以进一步提高呢?
  • 定理
    当阶数 n 为偶数时, Newton-Cotes公式至少具有n+1 次代数精度
    在这里插入图片描述
    在这里插入图片描述

三、几种常用的低阶求积公式⭐

梯形公式

  • n=1
    取n=1, 则h=b-a,等分点 x k = a + k h , ( k = 0 , 1 ) x_k=a+kh, (k=0,1) xk=a+kh,(k=0,1),积分为:
    在这里插入图片描述

Simpson公式

取n=2, 则h=0.5(b-a),等分点 x k = a + k h , ( k = 0 , 1 , 2 ) x_k=a+kh, (k=0,1,2) xk=a+kh,(k=0,1,2),积分为:
在这里插入图片描述

Cotes公式

取n=4, 则h=0.25(b-a),等分点 x k = a + k h , ( k = 0 , 1 , 2 , 3 , 4 ) x_k=a+kh, (k=0,1,2,3,4) xk=a+kh,(k=0,1,2,3,4),积分为:
在这里插入图片描述
习题

Newton-Cotes公式的误差/余项⭐⭐

  • 定义
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
习题


习题

  • 例题
  1. 在这里插入图片描述
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述

    在这里插入图片描述

总结

几种常用的低阶求积公式:

  • 梯形公式
    在这里插入图片描述
  • Simpson公式
    在这里插入图片描述
  • Cotes 公式
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值