TensorFlow-- Slim学习

本文介绍了TensorFlow中的轻量化库TF-Slim,用于构建、训练和评估复杂模型。它提供了arg_scope、model_variables、repeat、stack等实用工具,并详细讲解了如何使用Slim构建和训练VGG网络,以及模型的微调和评估。
摘要由CSDN通过智能技术生成

TF-Slim

  • TF-Slim 是 TensorFlow 中一个用来构建、训练、评估复杂模型的轻量化库。TF-Slim 模块可以和 TensorFlow 中其它API混合使用。
  • TF-Slim 模块是 TensorFlow 中最好用的 API 之一。尤其是里面引入的 arg_scope、model_variables、repeat、stack。

  • 学习后,这里留下学习传送门,以便后面持续学习使用:https://blog.csdn.net/u014061630/article/details/80632736#1_Slim__a_classheaderlink_hrefml_titlePermalink_to_this_headlinea_12
  • 文章目录
    1. Slim 模块的导入 ¶
    2. Slim 模块的优点 ¶
    3. Slim 模块的组成 ¶
    4. 使用 Slim 构建模型 ¶
      4.1 Slim 变量(Variables) ¶
      4.2 Slim 层(Layers) ¶
      4.3 Slim 作用域(Scopes) ¶
      4.4 实例:创建VGG网络(Working Example: Specifying the VGG16 Layers) ¶
    5. 使用 Slim 训练模型(Training Models) ¶
      5.1 Slim 损失函数(Losses) ¶
      5.2 Slim 训练 Loop(Training Loop) ¶
      5.3 实例:训练 VGG 模型(Working Example: Training the VGG16 Model) ¶
    6. 现有模型的微调(Fine-Tuning Existing Models) ¶
      6.1 从ckpt中恢复变量的简介(Brief Recap on Restoring Variables from a Checkpoint) ¶
      6.2 部分地恢复模型(Partially Restoring Models) ¶
      6.3 不同变量名称的模型的恢复(Restoring models with different variable names) ¶
      6.4 在一个不同的任务上微调模型(Fine-Tuning a Model on a different task) ¶
    7. 使用 Slim 评估模型(Evaluating Models) ¶
      7.1 Slim 评价指标(Metrics) ¶
      7.2 实例:追踪多个评价指标(Working example: Tracking Multiple Metrics) ¶
      7.3 评估Loop(Evaluation Loop) ¶
    8. 作者(Authors) ¶
    9. 参考资料: ¶
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值