TF-Slim
- TF-Slim 是 TensorFlow 中一个用来构建、训练、评估复杂模型的轻量化库。TF-Slim 模块可以和 TensorFlow 中其它API混合使用。
- TF-Slim 模块是 TensorFlow 中最好用的 API 之一。尤其是里面引入的 arg_scope、model_variables、repeat、stack。
- 学习后,这里留下学习传送门,以便后面持续学习使用:https://blog.csdn.net/u014061630/article/details/80632736#1_Slim__a_classheaderlink_hrefml_titlePermalink_to_this_headlinea_12
- 文章目录
- Slim 模块的导入 ¶
- Slim 模块的优点 ¶
- Slim 模块的组成 ¶
- 使用 Slim 构建模型 ¶
4.1 Slim 变量(Variables) ¶
4.2 Slim 层(Layers) ¶
4.3 Slim 作用域(Scopes) ¶
4.4 实例:创建VGG网络(Working Example: Specifying the VGG16 Layers) ¶ - 使用 Slim 训练模型(Training Models) ¶
5.1 Slim 损失函数(Losses) ¶
5.2 Slim 训练 Loop(Training Loop) ¶
5.3 实例:训练 VGG 模型(Working Example: Training the VGG16 Model) ¶ - 现有模型的微调(Fine-Tuning Existing Models) ¶
6.1 从ckpt中恢复变量的简介(Brief Recap on Restoring Variables from a Checkpoint) ¶
6.2 部分地恢复模型(Partially Restoring Models) ¶
6.3 不同变量名称的模型的恢复(Restoring models with different variable names) ¶
6.4 在一个不同的任务上微调模型(Fine-Tuning a Model on a different task) ¶ - 使用 Slim 评估模型(Evaluating Models) ¶
7.1 Slim 评价指标(Metrics) ¶
7.2 实例:追踪多个评价指标(Working example: Tracking Multiple Metrics) ¶
7.3 评估Loop(Evaluation Loop) ¶ - 作者(Authors) ¶
- 参考资料: ¶