nn.CrossEntropyLoss()
1.引言
在使用pytorch深度学习框架做多分类时,计算损失函数通常会使用交叉熵损失函数nn.CrossEntropyLoss()
2. 信息量和熵
信息量:它是用来衡量一个事件的不确定性的;一个事件发生的概率越大,不确定性越小,则它所携带的信息量就越小。假设$X$是一个离散型的随机变量,其取值集合为$X$ = $x_0,x_1,,,x_n$,其概率分布函数为$p(x) = Pr(X = x),x\in X$,则定义事件$X = x_0$的信息量为:
$$
I(x_i) = -log(p(x_i))
$$
当$p(x_0) = 1$ 时,该事必定发生,其信息量为0。
熵
熵用来衡量一个系统的混乱程度,代表系统中信息量的总和;熵值越大,表明这个系统的不确定性就越大。
信息量是衡量某个事件的不确定性,而熵是衡量一个系统(所有事件)的不确定性。
熵的计算公式:
$$
H(x) = -\sum_{i=1}^np(x_i)log(p(x_i))
$$
其中,$p(x_i)为事件X = x_i的概率,-log(p(x_i))为事件X = x_i 的信息量。$
可以看出,熵是信息量的期望值,是一个随机变量(一个系统,事件所有可能性)不确定性的度量。熵值越大,随机变量的取值就越难确定,系统也就越不稳定;熵值越小,随机变量的取值也就越