word2vec模型的训练与简单应用

本文介绍了word2vec模型的基本概念,包括CBOW和Skip-Gram算法,并详细阐述了从语料预处理、简体转换、分词到模型训练的全过程。使用Python的gensim库进行训练,并探讨了模型参数的意义。最后,通过TSNE降维展示了词向量的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:Win10 

语言与版本:python 3.7

一、word2vec简介

word2vec是一个能够产生词嵌入的模型,即可以根据文本产生一系列向量或向量空间。是一个强大的,无监督的词嵌入技术。

word2vec有两个不同的版本,区别在于算法不同:CBOW(连续词袋)与 Skip-Gram

CBOW中,目标词的上下文环境由其周边的的多个词来表示。 Skip-Gram则与之相反,通过目标词来预测上下文词。

二、前期准备

1、语料:维基中文语料  (下载地址:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2

      其他选择:搜狗实验室语料    (下载地址:http://www.sogou.com/labs/resource/ca.php)

      等等......

2、所用工具:

     (1)python版gensim安装(pip install gensim 或者 conda install gensim)

     (2)Opencc (链接:https://pan.baidu.com/s/1Rg759i1IDigZw9QcqZTXHg      提取码:2jp5 )

     (3)结巴分词 (pip install jieba 或者  前往https://pypi.org/project/jieba/#files 手动下载安装)

三、实验过程

1、语料预处理(传入参数为 “处理预料文件路径名字” + “空格” + “处理后的路径文件名”)

      利用下面的程序将下载好的语料转换为txt文件保存下来,其中每一行为一篇文章

import logging
import os.path
import sys
from gensim.corpora import WikiCorpus
if __name__ == '__main__':
    #建立日志
    program = os.path.basename(sys.argv[0])
    logger = logging.getLogger(program)
    logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s')
    logging.root.setLevel(level=logging.INFO)
    logger.info("running %s"% ' '.join(sys.argv))


    #参数长度不应该超过三
    if len(sys.argv) > 3:
        print(globals()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值