Word2Vec模型增量训练

当已有word2vec模型后,新的大量语料流入,增量训练成为高效解决方案。本文探讨word2vec模型的增量训练方法,并介绍gensim库中word2vec的API使用,包括模型训练、保存、加载及相似度计算等操作。
摘要由CSDN通过智能技术生成
一、 问题由来

word2vec的本质是一个神经网络语言模型,基于语言模型进行分布式词向量的训练。它需要大量的语料进行训练,从而找到词与词之间的关系,但是当我们已经训练好了一个word2vec模型之后,数据库中又新流动进来了很多语料,我们应该在怎么办呢?我们不可能又基于所有语料重新训练一遍(当语料过大时,太耗费时间了),这时候,增量训练就派上了用场。

二、word2vec模型的增量训练
import jieba
import re
import pandas as pd
from gensim.models.word2vec import Word2Vec


class TrainWord2Vec:
    """
    训练得到一个Word2Vec模型
    @author:xiaozhu
    @time:2018年10月12日
    """
    def __init__(self, data, stopword, num_features=100, min_word_count=1, context=4, incremental=False,
                 old_path):
        """
        定义变量
        :param data: 用于训练胡语料
        :param stopword: 停用词表
        :param num_features:  返回的向量长度
        :param min_word_count:  最低词频
        :param context: 滑动窗口大小
        :param incremental: 是否进行增量训练
        :param old_path: 若进行增量训练,原始模型路径
        """
        self.data = data
        self.stopword = stopword
        self.num_features = num_features
        self.min_word_count = min_word_count
        self.context = context
        self.incremental = incremental
        self
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值