【应用数学】动态最优化(3):离散动态规划与二次规划

200727本篇是应用数学之动态最优化理论的笔记,欢迎各位交流!今天是第三部分:离散动态规划与二次规划

本篇关于动态最优化的综合学习笔记。主要包括了离散与连续时间动态规划、连续时间最优控制与变分法等主题。本章仅给出在解决实际应用问题时的基本计算方法,对于数学上更进一步深入可以参考Stokey和Lucas(1989)。

3. 动态规划与二次规划

3.1 动态规划

3.1.1 确定性离散动态规划

对于无限期问题
max ⁡ ∑ t = 0 ∞ β t r ( x t , u t ) s . t . u t = h ( x t ) x t + 1 = g ( x t , u t ) \max \sum_{t=0}^{\infty} \beta^{t} r\left(x_{t}, u_{t}\right)\\ s.t. u_{t}=h\left(x_{t}\right)\\ \quad \quad x_{t+1}=g\left(x_{t}, u_{t}\right) maxt=0βtr(xt,ut)s.t.ut=h(xt)xt+1=g(xt,ut)

定义值函数为

v ( x 0 ) = max ⁡ { u t } t = 0 ∞ ∑ t = 0 ∞ β t r ( x t , u t ) v\left(x_{0}\right)=\max _{\left\{u_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} r\left(x_{t}, u_{t}\right) v(x0)={ ut}t=0maxt=0βtr(xt,ut)

则贝尔曼方程为
v ( x ) = max ⁡ u { r ( x , u ) + β v [ g ( x , u ) ] } v(x)=\max _{u}\{r(x, u)+\beta v[g(x, u)]\} v(x)=umax{ r(x,u)+βv[g(x,u)]}

此时对控制变量 u u u求导得到一阶条件,对状态变量 x x x求导得到包络定理,亦称为Benveniste-Scheinkman方程:
r u ( x , u ) + β v ′ [ g ( x , u ) ] g u ( x , u ) = 0 v ′ ( x ) = r x ( x , u ) + β v ′ [ g ( x , u ) ] g x ( x , u ) = 0 r_{u}(x, u)+\beta v^{\prime}[g(x, u)] g_{u}(x, u)=0\\ v^{\prime}(x)=r_{x}(x, u)+\beta v^{\prime}[g(x, u)] g_{x}(x, u)=0 ru(x,u)+βv[g(x,u)]gu(x,u)=0v(x)=rx(x,u)+βv[g(x,u)]gx(x,u)=0

综合以上两条件,得到欧拉方程,其中第二个方程为横截条件。
r u ( x t , x t + 1 ) + β r x

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值