double的dp,上取整下取整,整数消除浮点数

这篇博客探讨了在给定步长和距离数组的情况下,如何在不超过最大时间限制`ma`的前提下,以最小代价到达终点。文章通过动态规划(DP)方法解决这个问题,并特别强调了处理double类型精度问题的重要性。博主提到了在处理上取整和下取整时的注意事项,并给出了消除浮点数的策略。文章最后讨论了DP方程的正确构建方式,以及如何避免浮点数误差影响结果。
摘要由CSDN通过智能技术生成

LINK

给定dist数组,比如是:{1, 3, 2}
在这里插入图片描述
我们需要 到达终点C。 步行速度是固定的,为speed
当到达某一点时,如果耗时不是整数 比如是0.25: 则可以选择,是否跳过

  • 如果选择跳过: 即立刻继续行走,同时 代价 += 1
  • 否则: 必须等到整数点,即等到时间为1时 出发。

当然,如果耗时已经是整数,自然立刻走就行,无代价


以上图为例,到达A时, 时间是0.25:

  • 不跳过, 达到B点时间是: (1) + (3/4) = 1.75
  • 跳过(代价 = 1),到达B点时间是: (0.25) + (3/4) = 1

一种方案(不跳过,不跳过):
(1/4 上取整) + (3/4 上取整) + (2/4) = 1 + 1 + 0.5 = 2.5
注意,到达终点C时,此时就不用选择是否跳过了 因为已经到了,不存在上取整问题

一种方案(跳过,不跳过):
(1/4 跳过,不用上取整) + (3/4) + (2/4) = 1.5
在B时,此时耗时是1,已经是整数的,所以可以直接走。

给定一个ma,问在总耗时 <= ma的前提下,最小的代价。无解则输出-1
所谓无解,即如果每次都跳过,总耗时还>ma,则无解


n = 1000, dist[] = [1, 1e5], speed = 1e6

很直观的想, dp[i][j]为: 到达第[i]个点,且用了j次跳过,的 最小耗时。
for(i, 0, n-1, 1) if(dp[n-1][j] <= ma){ return j; } return -1;

注意,是到达第[i]个点, 不用考虑在第[i]个点 是否跳过!!
这是后面的事情,dp[i][j]直观到达第i个点。
即,第二维度的j 最多是n-1个,即跳过前面的n-1个点。

令cost = dist[i + 1] / speed,即当前点 到达 下个点,的时间
dp[i + 1][j] = ceil( dp[i][j] ) + cost, 当前在i点,不跳过[i]点,到达下个点
dp[i + 1][j + 1] = dp[i][j] + cost, 当前在i点,直接跳过
一定要注意这里!! 我们这里是方便写dp转换,所以直接写成等号=,但是实际,肯定是要取min的!!

dp[0][0] = (double)dist[0] / speed;
for(int i = 0; i < n - 1; ++i){
    for(int j = 0; j < n - 1; ++j){
        const double& cur = dp[i][j];
        dp[i + 1][j] = min (dp[i + 1][j], ceil(cur) + (double)dist[i + 1] / speed);
        dp[i + 1][j + 1] = min (dp[i + 1][j + 1], cur + (double)dist[i + 1] / speed);
    }
}
for(int i = 0; i < n; ++i){
    if (dp[n - 1][i] <= ma) { return i; }

}
return -1;

所以,倒是挺简单的dp,但是由于是double的dp,肯定是考察的对double的精度处理。

  • 第一个是ceil,他是很危险的。
    比如,本来是2,但计算机存储了[2.0000001],导致ceil错了。
    所以,ceil(X - eps), floor(X + eps)
  • 第二个是(dp <= ma)的比较,很容易忘记这里的比较! double的所有比较,也要当心!!
    比如,本来两者相同, 但是ma少存储了0.0000001
    所以是:dp <= ma + eps

好了,这样 上面的代码就正确了。

重点说下,eps怎么取。
首先,计算机产生的误差,肯定要比你的数据的有效位要低!!
比如,你double存最小精度是1e-6,计算机不会产生<=1e-6的误差!!! 否则,这还了得…
所以,也就意味着: 对于所有<1e-6的值,我们都可以忽略!!! 因为我们的有效位,就到1e-6

故,eps取到1e-7!!!


整数消除浮点数

注意,上面的算法 是完全正确的!!! 绝对没问题,即使double有误差,但我们已经处理绝对正确了,就使用上面算法足矣。

完全没必要使用这个算法, 了解一下即可。

上面算法大概形式是:
在这里插入图片描述
如果要消除分母, 自然重点是看 上取整 的那个式子,其他式子都可以直接同乘s

好了,看上下取整函数:
在这里插入图片描述
上下取整函数,不符合 交换律!!!

即,你写成:
F i ∗ s = ⌈ F i − 1 ∗ s ⌉ + d i s t [ i − 1 ] F_i * s = \lceil F_{i-1} * s \rceil + dist[i-1] Fis=Fi1s+dist[i1]
这是错的!!! 这个s,不可以放入 上取整里面去!!


但此时一定不要放弃!!! 不可以放到里, 那就放到外面呗!!
F i ∗ s = ⌈ F i − 1 ⌉ ∗ s + d i s t [ i − 1 ] F_i * s = \lceil F_{i-1} \rceil * s + dist[i-1] Fis=Fi1s+dist[i1]
这肯定是对的!!

首先看第一个式子:
F 0 = d [ 0 ] s F_0 = \frac{d[0]}{s} F0=sd[0]
这个式子,很容易可以把speed给消去:
F 0 ∗ s = d [ 0 ] F_0 * s = d[0] F0s=d[0]


此时我们得到:
F 0 ∗ s = d [ 0 ] F_0 * s = d[0] F0s=d[0]
F i ∗ s = ⌈ F i − 1 ⌉ ∗ s + d i s t [ i − 1 ] F_i * s = \lceil F_{i-1} \rceil * s + dist[i-1] Fis=Fi1s+dist[i1]
左侧 F0*s是整数!!!因为d[0]是整数
左侧 Fi*s是整数!! 因为右侧是:上取整*整数 + 整数!!!


令: P i = F i ∗ s P_i = F_i * s Pi=Fis则P都是整数!!!
有:
P 0 = d i s t [ 0 ] P_0 = dist[0] P0=dist[0] P i = ⌈ P i − 1 s ⌉ ∗ s + d i s t [ i − 1 ] (不跳过) P_i = \lceil \frac{P_{i-1}}{s} \rceil * s + dist[i-1](不跳过) Pi=sPi1s+dist[i1](不跳过) P i = P i − 1 + d i s t [ i − 1 ] (跳过) P_i =P_{i-1} + dist[i-1](跳过) Pi=Pi1+dist[i1](跳过)

所求答案: F[] <= ma,对应于: P[] <= ma * s

⌈ P i − 1 s ⌉ \lceil \frac{P_{i-1}}{s} \rceil sPi1中的 P i − 1 s \frac{P_{i-1}}{s} sPi1,他并不是一个整数,否则对一个整数 上取整,没有意义。 原因可以去看P与F的关系。
对于他的求法,你肯定不能: double ans = ceil( Pi-1 / s) 你这有回到double浮点数了!!
因为,这最终是个上取整,即是个整数。“而且,Pi-1 和 s,都是整数”,所以 没必要用double
{(Pi-1) + s - 1} / s便是答案

反正,你根据这个式子 进行dp即可。 毕竟这个式子,完全是推导出来的。

dp[0][0] = dist[0];
for(int i = 0; i < n - 1; ++i){
    for(int j = 0; j < n; ++j){
        const LL& cur = dp[i][j];
        dp[i + 1][j] = min (dp[i + 1][j], 
        		(cur + s - 1) / s * s + (LL)dist[i + 1]);
        		'注意这里!!! 别写成: (cur + s - 1) / s + (LL),还有个*s '
        dp[i + 1][j + 1] = min (dp[i + 1][j + 1], cur + dist[i + 1]);
    }
}
for(int i = 0; i < n; ++i){
    if (dp[n - 1][i] <= ma * 1ll * s) { return i; }
}
return -1;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值