ID_COUNT: 3
图片引用
图二
多边形
以下讨论, 均在(笛卡尔坐标系)中, 即两点间的距离为 (欧几里得距离)
由N条边和N个点组成, N >= 3
, 面积一定> 0
每条边, 都是(线段) 线段: 必须是直的, 不能弯曲
每个顶点, 一定是某两条边的端点;
不可以是(多条边)的端点, 也不可以是两条边的交点(这里的交点, 不是端点)
也就是, 有N条边, 所有的边 两两的 首尾端点连接, 围成一个 封闭的环;
如果给这个环, 一个方向, (顺或逆), 那么, 任意一个点, 入度和出度 均为1
实际上 以下这种多边形定义, 用的多:
给定N个点v0, v1, v2, ...
, 表示多边形(顺/逆时针)的遍历方向,
依次的连接v_i 和 v_i+1
端点, 该线段, 就是多边形的一条边;
… 即, 给定N个点的(线性序列), 依次的相邻点连接边, 一共N条边, 就可以唯一的确定一个形状
必须要给定: (顺/逆时针), 这句话; 否则, 其代表的(形状), 不一定是 (多边形)
比如正方形, 从左上角开始, 顺时针方向, 依次记作点为: A B C D
;
即, 4个点ABCD
且按照顺时针方向, 就可以唯一的表示这个正方形
但是, 如果不说方向, 单说ABCD
四个点, 那么, 如果按照ACBD
的方向 去依次连接 去画4条边, 得到一个形状
你会发现, 它都不是多边形
因此, 给定N个点的线性序列时, 一定要提前说明: 该线性序列是有方向的! (顺/逆), 此时, 该线性序列 才可以唯一的表示一个多边形
多边形, 允许三点共线, 即可能会存在 某个角为180
;
不管凹/凸边形, 都可能存在 三点共线的情况
分类
凹凸性
一个多边形, 不是凹多边形, 就是凸多边形
周长
令v0, v1, v2, ..., v(N-1)
是该N边形的 按照 顺/逆时针 的所有顶点;
则 周长 = ∑