`算法知识` 多边形, 凸多边形, 外接矩形

本文探讨了多边形的基本概念,包括分类、周长计算以及多边形的外接矩形。特别强调了在定义多边形时需要指定顺时针或逆时针方向的重要性。此外,还详细解释了凸多边形的特性,并指出任何凸多边形去除一个点后仍保持凸性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


ID_COUNT: 3


图片引用


图二

在这里插入图片描述


多边形

以下讨论, 均在(笛卡尔坐标系)中, 即两点间的距离为 (欧几里得距离)


由N条边和N个点组成, N >= 3, 面积一定> 0

每条边, 都是(线段) 线段: 必须是直的, 不能弯曲

每个顶点, 一定是某两条边的端点;
不可以是(多条边)的端点, 也不可以是两条边的交点(这里的交点, 不是端点)

也就是, 有N条边, 所有的边 两两的 首尾端点连接, 围成一个 封闭的环;
如果给这个, 一个方向, (顺或逆), 那么, 任意一个点, 入度和出度 均为1


实际上 以下这种多边形定义, 用的多:
给定N个点v0, v1, v2, ..., 表示多边形(顺/逆时针)的遍历方向,
依次的连接v_i 和 v_i+1端点, 该线段, 就是多边形的一条边;
即, 给定N个点的(线性序列), 依次的相邻点连接边, 一共N条边, 就可以唯一的确定一个形状

必须要给定: (顺/逆时针), 这句话; 否则, 其代表的(形状), 不一定是 (多边形)
比如正方形, 从左上角开始, 顺时针方向, 依次记作点为: A B C D;
即, 4个点ABCD 且按照顺时针方向, 就可以唯一的表示这个正方形
但是, 如果不说方向, 单说ABCD四个点, 那么, 如果按照ACBD的方向 去依次连接 去画4条边, 得到一个形状
你会发现, 它都不是多边形

因此, 给定N个点的线性序列时, 一定要提前说明: 该线性序列是有方向的! (顺/逆), 此时, 该线性序列 才可以唯一的表示一个多边形


多边形, 允许三点共线, 即可能会存在 某个角为180;
不管凹/凸边形, 都可能存在 三点共线的情况


分类

凹凸性
一个多边形, 不是凹多边形, 就是凸多边形


周长

v0, v1, v2, ..., v(N-1)是该N边形的 按照 顺/逆时针 的所有顶点;
周长 = ∑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值