老年人跌倒与骨折:评估与预防

研究背景

跌倒影响约30%的所有65岁以上老年人。2003年,超过13,000名老年人因跌倒或跌倒相关伤害死亡。对于老年髋部骨折患者,一年内的全因死亡率为24%。在跌倒前和跌倒后了解如何评估跌倒风险可以帮助定制干预措施以防止未来的伤害。

研究主旨

本文讨论了老年人跌倒的流行病学、风险因素、评估方法和预防策略。指出跌倒是老年人中常见的问题,导致高比例的死亡率和发病率。文章强调了个性化治疗计划的重要性,并提供了风险因素筛查和干预措施的概述,包括运动、维生素D补充、环境安全评估等。

研究特点

每年跌倒和跌倒相关伤害对老年人的健康和寿命产生重大影响。了解跌倒风险因素的累加性质、每年筛查跌倒及其相关因素、针对识别出的风险因素制定干预措施至关重要。鉴于每位老年人的风险概况和能力(生物和社会)各不相同,每个人都需要个性化的治疗计划以减少未来跌倒的机会。

文章出处 老年人跌倒与骨折:评估与预防

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值