随着深度学习在计算机视觉领域的广泛应用,目标检测算法得到了长足的发展。注意力机制在深度学习领域取得了显著进展,尤其是在卷积神经网络(CNN)中,其通过动态调整特征图权重实现了对关键信息的关注。Squeeze-and-Excitation(SE)模块是经典的通道注意力机制,通过对全局特征进行压缩和激励操作,有效提升了特征表示能力。然而,SE模块在处理通道间关系时存在一定的局限性,例如在降维过程中可能导致部分通道信息丢失,进而影响模型的整体性能本文提出了一种基于增强型空间-通道协同模块(ESE)的解决方案,以克服SE注意力机制中的这一难题。


1. SE模块的局限性分析
S