逻辑回归(Logistic Regression)

L o g i s t i c Logistic Logistic分布

X X X是连续随机变量, X X X服从 L o g i s t i c Logistic Logistic分布是指 X X X的分布函数和密度函数分别为:
F ( x ) = P ( X ⩽ x ) = 1 1 + e − ( x − μ ) / γ f ( x ) = F ′ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 F(x)=P(X \leqslant x)=\frac{1}{1+\mathrm{e}^{-(x-\mu) / \gamma}}\\ f(x)=F^{\prime}(x)=\frac{\mathrm{e}^{-(x-\mu) / \gamma}}{\gamma\left(1+\mathrm{e}^{-(x-\mu) / \gamma}\right)^{2}} F(x)=P(Xx)=1+e(xμ)/γ1f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ
其中, μ \mu μ为位置系数, γ > 0 \gamma>0 γ>0为形状参数

逻辑回归的定义

L o g i s t i c Logistic Logistic回归目的是从特征学习一个 0 / 1 0/1 0/1分类模型,而这个模型是将特征的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷,因此,使用 L o g i s t i c Logistic Logistic函数(亦称为 s i g m o i d sigmoid sigmoid函数)将自变量映射到 ( 0 , 1 ) (0,1) (0,1)上,映射后的值被认为是属于 y = 1 y=1 y=1的概率

逻辑回归模型:
P ( Y = 1 ∣ x ) = exp ⁡ ( w ⋅ x + b ) 1 + exp ⁡ ( w ⋅ x + b ) P ( Y = 0 ∣ x ) = 1 1 + exp ⁡ ( w ⋅ x + b ) \begin{array}{l}{P(Y=1 | x)=\frac{\exp (w \cdot x+b)}{1+\exp (w \cdot x+b)}} \\ {P(Y=0 | x)=\frac{1}{1+\exp (w \cdot x+b)}}\end{array} P(Y=1x)=1+exp(wx+b)exp(wx+b)P(Y=0x)=1+exp(wx+b)1
这里, x ∈ R n x \in \mathbf{R}^{n} xRn是输入, Y ∈ { 0 , 1 } Y \in\{0,1\} Y{0,1}是输出, w ∈ R n w \in \mathbf{R}^{n} wRn b ∈ R b \in \mathbf{R} bR是参数, w w w称为权值向量, b b b称为偏置, w ⋅ x w \cdot x wx w w w x x x的内积

将权值向量和偏置进行拓展: w = ( w ( 1 ) , w ( 2 ) , ⋯   , w ( n ) , b ) T w=\left(w^{(1)}, w^{(2)}, \cdots, w^{(n)}, b\right)^{\mathrm{T}} w=(w(1),w(2),,w(n),b)T x = ( x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) , 1 ) T x=\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}, 1\right)^{\mathrm{T}} x=(x(1),x(2),,x(n),1)T

逻辑回归模型为:
P ( Y = 1 ∣ x ) = exp ⁡ ( w ⋅ x ) 1 + exp ⁡ ( w ⋅ x ) P ( Y = 0 ∣ x ) = 1 1 + exp ⁡ ( w ⋅ x ) \begin{array}{l}{P(Y=1 | x)=\frac{\exp (w \cdot x)}{1+\exp (w \cdot x)}} \\ {P(Y=0 | x)=\frac{1}{1+\exp (w \cdot x)}}\end{array} P(Y=1x)=1+exp(wx)exp(wx)P(Y=0x)=1+exp(wx)1
事件的几率( o d d s odds odds)为: p 1 − p \frac{p}{1-p} 1pp

时间的对数几率( l o g o d d s log odds logodds)或者 l o g i t logit logit函数为: logit ⁡ ( p ) = log ⁡ p 1 − p \operatorname{logit}(p)=\log \frac{p}{1-p} logit(p)=log1pp

对于逻辑回归来说: log ⁡ P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = w ⋅ x \log \frac{P(Y=1 | x)}{1-P(Y=1 | x)}=w \cdot x log1P(Y=1x)P(Y=1x)=wx

这说明在逻辑回归模型中输出 Y = 1 Y=1 Y=1的对数几率是输入 x x x线性函数

模型参数估计

对于给定训练集: T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)} x ∈ R n x \in \mathbf{R}^{n} xRn是输入, Y ∈ { 0 , 1 } Y \in\{0,1\} Y{0,1}是输出

应用极大似然估计法估计模型参数,设:
P ( Y = 1 ∣ x ) = π ( x ) , P ( Y = 0 ∣ x ) = 1 − π ( x ) , π ( x ) = exp ⁡ ( w ⋅ x ) 1 + exp ⁡ ( w ⋅ x ) P(Y=1 | x)=\pi(x), \quad P(Y=0 | x)=1-\pi(x), \quad \pi(x)=\frac{\exp (w \cdot x)}{1+\exp (w \cdot x)} P(Y=1x)=π(x),P(Y=0x)=1π(x),π(x)=1+exp(wx)exp(wx)
似然函数为:
∏ i = 1 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i \prod_{i=1}^{N}\left[\pi\left(x_{i}\right)\right]^{y_{i}}\left[1-\pi\left(x_{i}\right)\right]^{1-y_{i}} i=1N[π(xi)]yi[1π(xi)]1yi
对数似然函数为:
L ( w ) = ∑ i = 1 N [ y i log ⁡ π ( x i ) + ( 1 − y i ) log ⁡ ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i log ⁡ π ( x i ) 1 − π ( x i ) + log ⁡ ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i ( w ⋅ x i ) − log ⁡ ( 1 + exp ⁡ ( w ⋅ x i ) ] \begin{aligned} L(w) &=\sum_{i=1}^{N}\left[y_{i} \log \pi\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\pi\left(x_{i}\right)\right)\right] \\ &=\sum_{i=1}^{N}\left[y_{i} \log \frac{\pi\left(x_{i}\right)}{1-\pi\left(x_{i}\right)}+\log \left(1-\pi\left(x_{i}\right)\right)\right] \\ &=\sum_{i=1}^{N}\left[y_{i}\left(w \cdot x_{i}\right)-\log \left(1+\exp \left(w \cdot x_{i}\right)\right]\right.\end{aligned} L(w)=i=1N[yilogπ(xi)+(1yi)log(1π(xi))]=i=1N[yilog1π(xi)π(xi)+log(1π(xi))]=i=1N[yi(wxi)log(1+exp(wxi)]
L ( w ) L(w) L(w)求极大值,得到 w w w的估计值,可以通过梯度下降或者拟牛顿法进行学习

假设 w w w的极大似然估计值为 w ^ \hat{\boldsymbol{w}} w^,那么逻辑回归模型为:
P ( Y = 1 ∣ x ) = exp ⁡ ( w ^ ⋅ x ) 1 + exp ⁡ ( w ^ ⋅ x ) P ( Y = 0 ∣ x ) = 1 1 + exp ⁡ ( w ^ ⋅ x ) P(Y=1 | x)=\frac{\exp (\hat{w} \cdot x)}{1+\exp (\hat{w} \cdot x)}\\ P(Y=0 | x)=\frac{1}{1+\exp (\hat{w} \cdot x)} P(Y=1x)=1+exp(w^x)exp(w^x)P(Y=0x)=1+exp(w^x)1

多类别逻辑回归

随机变量 Y Y Y的取值集合为 { 1 , 2 , ⋯   , K } \{1,2, \cdots, K\} {1,2,,K} x ∈ R n + 1 , w k ∈ R n + 1 x \in \mathbf{R}^{n+1}, w_{k} \in \mathbf{R}^{n+1} xRn+1,wkRn+1,多项逻辑回归模型为:
P ( Y = k ∣ x ) = exp ⁡ ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 exp ⁡ ( w k ⋅ x ) , k = 1 , 2 , ⋯   , K − 1 P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 exp ⁡ ( w k ⋅ x ) P(Y=k | x)=\frac{\exp \left(w_{k} \cdot x\right)}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)}, \quad k=1,2, \cdots, K-1\\ P(Y=K | x)=\frac{1}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)} P(Y=kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,,K1P(Y=Kx)=1+k=1K1exp(wkx)1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值