mae,mse,rmse分别利用sklearn和numpy实现

1、mae(平均绝对误差)

(1) 计算公式

在这里插入图片描述

(2) sklearn实现
from sklearn.metrics import mean_absolute_error
result=mean_absolute_error(y_label,y_predict)
(3) numpy实现
import numpy as np
y_label=np.array(y_label)
y_predict=np.array(y_predict)
result= np.sum(np.abs(y_label-y_predict))/len(y_label)

2、mse(均方误差)

(1) 计算公式

在这里插入图片描述

(2) sklearn实现
from sklearn.metrics import mean_squared_error
result=mean_squared_error(y_label,y_predict)
(3) numpy实现
import numpy as np
y_label=np.array(y_label)
y_predict=np.array(y_predict)
result= np.sum((y_label-y_predict)**2)/len(y_label)

3、rmse(均方根误差)

(1) 计算公式

在这里插入图片描述

(2) 实现
rmse=np.sqrt(mse)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值