1、mae(平均绝对误差)
(1) 计算公式
(2) sklearn实现
from sklearn.metrics import mean_absolute_error
result=mean_absolute_error(y_label,y_predict)
(3) numpy实现
import numpy as np
y_label=np.array(y_label)
y_predict=np.array(y_predict)
result= np.sum(np.abs(y_label-y_predict))/len(y_label)
2、mse(均方误差)
(1) 计算公式
(2) sklearn实现
from sklearn.metrics import mean_squared_error
result=mean_squared_error(y_label,y_predict)
(3) numpy实现
import numpy as np
y_label=np.array(y_label)
y_predict=np.array(y_predict)
result= np.sum((y_label-y_predict)**2)/len(y_label)
3、rmse(均方根误差)
(1) 计算公式
(2) 实现
rmse=np.sqrt(mse)