问题描述
有n个集装箱要装上一艘载重量为W的轮船,其中集装箱i(1≤i≤n)的重量为wi。
不考虑集装箱的体积限制,现要选出尽可能多的集装箱装上轮船,使它们的重量之和不超过W。
问题求解
这里的最优解是选出尽可能多的集装箱个数,并采用贪心法求解。
当重量限制为W时,wi越小可装载的集装箱个数越多,所以采用优先选取重量轻的集装箱装船的贪心思路。
对wi从小到大排序得到{w1,w2,…,wn},设最优解向量为x={x1,x2,…,xn},显然,x1=1,则x’={x2,…,xn}是装载问题w’={w2,…,wn},W’=W-w1的最优解,满足贪心最优子结构性质。
代码
int w[] = { 0,5,2,6,4,3 };
int n = 5, W = 10;
int maxw;
int x[MAXN];
void solve()
{
memset(x, 0, sizeof(x));
sort(w + 1, w + n + 1);
maxw = 0;
int restw = W;
for (int i = 1; i <= n && w[i] <= restw; i++)
{
x[i] = 1;
restw -= w[i];
maxw += w[i];
}
}
算法分析
算法的主要时间花费在排序上,时间复杂度为O(nlog2n)。