学习日记2020-10-21(注意力模块)

本文探讨了在深度学习特别是目标检测中,注意力模块的重要性和应用。作者介绍了空间域、通道域和混合域的注意力机制,引用了Spatial Transformer Networks作为空间域注意力的例子,并解释了其工作原理。此外,还提到了注意力机制在不同尺度和维度上的应用,包括空间、通道和时间域。文章最后提及使用tikz绘制深度学习网络图。
摘要由CSDN通过智能技术生成

注意力模块:
物体间或者物体内一些区域的关联性是有助于目标检测任务的,但是之前没人有实际的证明如何使用这种关联性是一定可行的,本文作者就尝试在检测网络中添加注意力模块。《Relation Networks for Object Detection》

转载自博客:

添加链接描述
计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息
主要是三种注意力域,1空间域(spatial domain),2通道域(channel domain),3混合域(mixed domain)。–时间域(time domain)
1Spatial Transformer Networksÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值