如何训练 RAG 模型

训练 RAG(Retrieval-Augmented Generation)模型涉及多个步骤,包括准备数据、构建知识库、配置检索器和生成模型,以及进行训练。以下是一个详细的步骤指南,帮助你训练 RAG 模型。

1. 安装必要的库

确保你已经安装了必要的库,包括 Hugging Face 的 transformersdatasets,以及 Elasticsearch 用于检索。

pip install transformers datasets elasticsearch

2. 准备数据

构建知识库

你需要一个包含大量文档的知识库。这些文档可以来自各种来源,如维基百科、新闻文章等。

from datasets import load_dataset

# 加载示例数据集(例如维基百科)
dataset = load_dataset('wikipedia', '20200501.en')

# 获取文档列表
documents = dataset['train']['text']
将文档索引到 Elasticsearch

使用 Elasticsearch 对文档进行索引,以便后续检索。

from elasticsearch import Elasticsearch

# 初始化 Elasticsearch 客户端
es = Elasticsearch()

# 定义索引映射
index_mapping = {
    "mappings": {
        "properties": {
            "text": {"type": "text"},
            "title": {"type": "text"}
        }
    }
}

# 创建索引
index_name = "knowledge_base"
if not es.indices.exists(index=index_name):
    es.indices.create(index=index_name, body=index_mapping)

# 索引文档
for i, doc in enumerate(documents):
    es.index(index=index_name, id=i, body={"text": doc, "title": f"Document {i}"})

3. 准备训练数据

加载训练数据集

你需要一个包含问题和答案的训练数据集。

from datasets import load_dataset

# 加载示例数据集(例如 SQuAD)
train_dataset = load_dataset('squad', split='train')
预处理训练数据

将训练数据预处理为适合 RAG 模型的格式。

from transformers import RagTokenizer

# 初始化 tokenizer
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token")

def preprocess_data(examples):
    questions = examples["question"]
    answers = examples["answers"]["text"]
    inputs = tokenizer(questions, truncation=True, padding="max_length", max_length=128)
    labels = tokenizer(answers, truncation=True, padding="max_length", max_length=128)["input_ids"]
    return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": labels}

# 预处理训练数据
train_dataset = train_dataset.map(preprocess_data, batched=True)

4. 配置检索器和生成模型

初始化检索器

使用 Elasticsearch 作为检索器。

from transformers import RagRetriever

# 初始化检索器
retriever = RagRetriever.from_pretrained("facebook/rag-token", index_name="knowledge_base", es_client=es)
初始化生成模型

加载预训练的生成模型。

from transformers import RagSequenceForGeneration

# 初始化生成模型
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token", retriever=retriever)

5. 训练模型

配置训练参数

使用 Hugging Face 的 Trainer 进行训练。

from transformers import Trainer, TrainingArguments

# 配置训练参数
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="steps",
    eval_steps=1000,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=3,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_steps=10,
)

# 初始化 Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=train_dataset,
)

# 开始训练
trainer.train()

6. 保存和评估模型

保存模型

训练完成后,保存模型以供后续使用。

trainer.save_model("./rag-model")
评估模型

评估模型的性能。

from datasets import load_metric

# 加载评估指标
metric = load_metric("squad")

def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    return result

# 评估模型
eval_results = trainer.evaluate(compute_metrics=compute_metrics)
print(eval_results)

完整示例代码

以下是一个完整的示例代码,展示了如何训练 RAG 模型:

from datasets import load_dataset
from elasticsearch import Elasticsearch
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, Trainer, TrainingArguments, load_metric

# 加载示例数据集(例如维基百科)
dataset = load_dataset('wikipedia', '20200501.en')
documents = dataset['train']['text']

# 初始化 Elasticsearch 客户端
es = Elasticsearch()

# 定义索引映射
index_mapping = {
    "mappings": {
        "properties": {
            "text": {"type": "text"},
            "title": {"type": "text"}
        }
    }
}

# 创建索引
index_name = "knowledge_base"
if not es.indices.exists(index=index_name):
    es.indices.create(index=index_name, body=index_mapping)

# 索引文档
for i, doc in enumerate(documents):
    es.index(index=index_name, id=i, body={"text": doc, "title": f"Document {i}"})

# 加载训练数据集(例如 SQuAD)
train_dataset = load_dataset('squad', split='train')

# 初始化 tokenizer
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token")

def preprocess_data(examples):
    questions = examples["question"]
    answers = examples["answers"]["text"]
    inputs = tokenizer(questions, truncation=True, padding="max_length", max_length=128)
    labels = tokenizer(answers, truncation=True, padding="max_length", max_length=128)["input_ids"]
    return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": labels}

# 预处理训练数据
train_dataset = train_dataset.map(preprocess_data, batched=True)

# 初始化检索器
retriever = RagRetriever.from_pretrained("facebook/rag-token", index_name="knowledge_base", es_client=es)

# 初始化生成模型
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token", retriever=retriever)

# 配置训练参数
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="steps",
    eval_steps=1000,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=3,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_steps=10,
)

# 初始化 Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=train_dataset,
)

# 开始训练
trainer.train()

# 保存模型
trainer.save_model("./rag-model")

# 加载评估指标
metric = load_metric("squad")

def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    return result

# 评估模型
eval_results = trainer.evaluate(compute_metrics=compute_metrics)
print(eval_results)

注意事项

  1. 数据质量和数量:确保知识库中的文档质量高且数量充足,以提高检索和生成的准确性。
  2. 模型选择:根据具体任务选择合适的 RAG 模型,如 facebook/rag-tokenfacebook/rag-sequence
  3. 计算资源:RAG 模型的训练和推理过程可能需要大量的计算资源,确保有足够的 GPU 或 TPU 支持。
  4. 性能优化:可以通过模型剪枝、量化等技术优化推理速度,特别是在实时应用中。

参考博文:RAG(Retrieval-Augmented Generation)检索增强生成基础入门

### 实战指南:本地部署 DeepSeek 进行 RAG 模型训练 #### 准备环境 为了成功在本地环境中部署并运行 DeepSeek 的 RAG 训练项目,需先安装必要的依赖项。建议使用 Python 虚拟环境来管理这些依赖。 ```bash python3 -m venv rag_env source rag_env/bin/activate pip install --upgrade pip ``` 接着,根据官方文档中的推荐配置[^1],确保已安装最新版本的相关库: ```bash pip install deepseek transformers datasets torch faiss-cpu ``` #### 获取数据集 对于检索增强生成 (RAG) 模型而言,准备高质量的数据至关重要。通常情况下,会涉及到两个主要部分:一个是用于索引的知识库;另一个则是对话历史记录或其他形式的输入文本。 可以利用 Hugging Face 提供的 `datasets` 库加载预处理过的公开可用数据集: ```python from datasets import load_dataset dataset = load_dataset('wiki_dpr', 'psgs_w100') print(dataset['train'][0]) ``` #### 配置模型参数 创建一个 JSON 文件以定义模型的具体设置,例如编码器架构、解码器类型以及超参调整选项等。此文件将作为后续脚本执行的基础依据之一。 ```json { "model_name_or_path": "facebook/dpr-question_encoder-single-nq-base", "index_name_or_path": "./indexes/wiki-dpr", "output_dir": "./results" } ``` #### 编写训练脚本 编写一段 Python 代码片段负责初始化模型实例、构建索引结构、启动实际训练过程,并保存最终成果至指定位置。 ```python import json from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from transformers.trainer_utils import set_seed from transformers.training_args import TrainingArguments from transformers.trainer import Trainer def main(): with open('./config.json') as f: config = json.load(f) tokenizer = RagTokenizer.from_pretrained(config["model_name_or_path"]) retriever = RagRetriever.from_pretrained( pretrained_question_encoder=config["model_name_or_path"], index_name="custom", passages_path="./data/passages.jsonl.gz" ) model = RagSequenceForGeneration.from_pretrained( config["model_name_or_path"], retriever=retriever, use_dummy_dataset=True ) training_args = TrainingArguments(output_dir='./outputs') trainer = Trainer( model=model, args=training_args, train_dataset=None, eval_dataset=None ) set_seed(42) trainer.train() if __name__ == "__main__": main() ``` #### 测试与验证 完成上述步骤之后,可以通过简单的命令行指令触发整个流程,观察控制台输出日志确认一切正常运作。 ```bash python run_rag.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值