大学生心理健康调查与可视化之数据获取分析

以下是获取大学生心理健康开源数据集的主要途径及推荐资源:


一、综合数据平台

  1. Kaggle

  2. UCI Machine Learning Repository


二、学术研究共享平台

  1. Zenodo

  2. OpenNeuro


三、政府与教育机构

  1. WHO Global Health Observatory

  2. 中国国家心理健康服务平台


四、高校研究项目

  1. 哈佛大学 Dataverse

  2. 北京大学开放研究数据平台


五、数据采集工具

  1. PsyToolKit

  2. LimeSurvey

    • 开源问卷系统,支持导出结构化数据:
      # 示例:从LimeSurvey API获取数据
      import requests
      response = requests.get(
          "https://yourdomain.org/limesurvey/api",
          params={"survey_id":123, "token":"YOUR_KEY"}
      )
      

六、注意事项

  • 伦理合规:使用数据前需确认是否符合《赫尔辛基宣言》及当地隐私法规。
  • 数据清洗:开源数据常存在缺失值,建议使用Pandas处理:
    df = df.dropna(subset=['depression_score'])
    df['anxiety_level'] = df['anxiety_score'].apply(
        lambda x: 'high' if x>14 else 'medium' if x>7 else 'low'
    )
    
  • 数据增强:对小样本数据集可结合SMOTE算法生成合成数据:
    from imblearn.over_sampling import SMOTE
    X_resampled, y_resampled = SMOTE().fit_resample(X, y)
    

如果需要特定国家/地区的数据,可尝试通过当地教育部门信息公开申请获取(如美国通过FOIA请求)。建议优先选择使用标准化心理评估工具(如PHQ-9、GAD-7、SCL-90)的数据集,以确保研究效度。

在全球范围内,随着现代生活节奏的加快和压力的增加,人们对心理健康问题的关注日益增加。焦虑、抑郁、压力等心理健康问题日益突出,呼吁更加深入的调查和理解。 本数据集记录了一项追踪心理健康趋势的全球调查。该调查涉及来自不同人口背景的受访者,包括性别、就业状况和地理区域,旨在更好地了解特定时间段内全球心理健康的变化。数据涵盖了一系列变量,如压力、抑郁、焦虑、主观幸福感和心理健康服务的使用水平。 Timestamp 受访时间 Gender 受访者性别 Country 受访者居住的国家 Occupation 受访者的职业 self_employed 受访者是否为自雇人士? family_history 受访者的家庭中是否有精神健康障碍史? treatment 受访者是否接受过心理健康问题的治疗? Days_Indoors 受访者每周待在室内的估计天数。 Growing_Stress 受访者当前感受到的压力程度 Changes_Habits 受访者的睡眠习惯或模式有任何变化吗? Mental_Health_History 受访者以前是否有精神健康障碍史? Mood_Swings 受访者是否经历过突然的情绪波动? Coping_Struggles 受访者在应对压力或压力方面有困难吗? Work_Interest 受访者对工作的兴趣和积极性 Social_Weakness 受访者是否觉得很难进行社交互动或维持关系? mental_health_interview 受访者是否愿意接受心理健康访谈? care_options 受访者是否意识到或正在使用心理保健方案?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值