数据分析每周挑战——睡眠质量影响因素研究

失踪人口回归

背景描述 :

在当今社会,越来越多的人开始关注睡眠与健康之间的紧密联系。随着可穿戴设备技术的发展,人们可以更精确地追踪自己的睡眠模式和健康状况,从而更好地理解睡眠质量对日常生活的实际影响。

本数据集为人工生成的数据集,目的是探究不同因素是如何影响睡眠质量和整体健康的。
本数据集模拟了多种情况,通过分析可以了解睡眠和健康之间可能存在的各种联系和变化,非常适合用来做预测分析和研究。

数据说明:

字段 说明
Heart Rate Variability 心率变异性:心跳时间间隔的模拟变化
Body Temperature 体温:以摄氏度为单位的人工生成体温
Movement During Sleep 睡眠期间活动:睡眠时活动量的合成数据
Sleep Duration Hours 睡眠时长:模拟生成的总睡眠小时数
Sleep Quality Score 睡眠质量评分:代表睡眠质量的合成评分
Caffeine Intake (mg) 咖啡因摄入量(毫克):以毫克为单位的模拟咖啡因摄入量
Stress Level 压力水平:压力水平的模拟指数
Bedtime Consistency 睡眠规律性:睡眠时间一致性的模拟值;范围 0-1,数值越低表示规律性越差
Light Exposure Hours 日间光照时长:白天接触到光照的时长

处理数据:

1.数据导入:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np


# 设置字体以支持中文显示
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

data = pd.read_csv("D:/每周挑战/wearable_tech_sleep_quality.csv")
data.head(5)

读取到数据后,为了后续方便处理,我们将英文名称全部换为中文

data.rename(columns = {"Heart_Rate_Variability":"心率变异性",
                      "Body_Temperature":"体温",
                      "Movement_During_Sleep":"睡眠期间活动",
                      "Sleep_Duration_Hours":"睡眠时长",
                      "Sleep_Quality_Score":"睡眠质量评分",
                      "Caffeine_Intake_mg":"咖啡因摄入量(毫克)",
                      "Stress_Level":"压力水平",
                      "Bedtime_Consistency":"睡眠规律性",
                      "Light_Exposure_hours":"日间光照时长",},inplace=True)

data.head(5)

2.数据清洗:

data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 9 columns):
 #   Column      Non-Null Count  Dtype  
---  ------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值