失踪人口回归
背景描述 :
在当今社会,越来越多的人开始关注睡眠与健康之间的紧密联系。随着可穿戴设备技术的发展,人们可以更精确地追踪自己的睡眠模式和健康状况,从而更好地理解睡眠质量对日常生活的实际影响。
本数据集为人工生成的数据集,目的是探究不同因素是如何影响睡眠质量和整体健康的。
本数据集模拟了多种情况,通过分析可以了解睡眠和健康之间可能存在的各种联系和变化,非常适合用来做预测分析和研究。
数据说明:
字段 | 说明 |
---|---|
Heart Rate Variability | 心率变异性:心跳时间间隔的模拟变化 |
Body Temperature | 体温:以摄氏度为单位的人工生成体温 |
Movement During Sleep | 睡眠期间活动:睡眠时活动量的合成数据 |
Sleep Duration Hours | 睡眠时长:模拟生成的总睡眠小时数 |
Sleep Quality Score | 睡眠质量评分:代表睡眠质量的合成评分 |
Caffeine Intake (mg) | 咖啡因摄入量(毫克):以毫克为单位的模拟咖啡因摄入量 |
Stress Level | 压力水平:压力水平的模拟指数 |
Bedtime Consistency | 睡眠规律性:睡眠时间一致性的模拟值;范围 0-1,数值越低表示规律性越差 |
Light Exposure Hours | 日间光照时长:白天接触到光照的时长 |
处理数据:
1.数据导入:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# 设置字体以支持中文显示
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定使用黑体
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
data = pd.read_csv("D:/每周挑战/wearable_tech_sleep_quality.csv")
data.head(5)
读取到数据后,为了后续方便处理,我们将英文名称全部换为中文
data.rename(columns = {"Heart_Rate_Variability":"心率变异性",
"Body_Temperature":"体温",
"Movement_During_Sleep":"睡眠期间活动",
"Sleep_Duration_Hours":"睡眠时长",
"Sleep_Quality_Score":"睡眠质量评分",
"Caffeine_Intake_mg":"咖啡因摄入量(毫克)",
"Stress_Level":"压力水平",
"Bedtime_Consistency":"睡眠规律性",
"Light_Exposure_hours":"日间光照时长",},inplace=True)
data.head(5)
2.数据清洗:
data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------