- 博客(7)
- 收藏
- 关注
原创 第七周打卡:逻辑回归
1、前言在kaggle数据竞赛网站中,LR算法出场率最高。除了应用广泛外,LR的建模过程还体现了数据建模中很重要的思想:对问题划分层次,并利用非线性变换和线性模型的组合,将未知的复杂问题分解为已知的简单问题可以说:理解好逻辑回归的细节,就掌握了数据建模的精髓。2、什么是逻辑回归逻辑回归虽说名字带有回归,但却是分类算法。其原理是将样本的特征和样本发生的概率联系起来,即预测的是样本发生的概...
2020-04-17 10:07:32 242
原创 第六周打卡:多项式回归、偏差方差、模型正则化
1、多项式回归1.1、前言简单线性回归:输入特征为一维多元线性回归:输入特征为多为但在线性回归中有很强的假设条件,数据存在线性关系。而在实际场景中,大多数数据并不具有明显的线性关系,因此对线性回归法进行改性,使用多项式回归法,可对非线性数据进行处理研究一个因变量与一个或多个自变量间多项式的回归分析方法,叫多项式回归。多项式回归属于线性回归模型的一种,其回归函数关于回归系数是线性的若自变...
2020-04-08 11:37:16 432
原创 第五周打卡:梯度下降法
1、 前言通过之前的学习,有分类算法kNN近邻算法,回归算法线性回归算法。可以总结,机器学习就是寻找一种函数f(x)并进行优化,且这种函数能够做预测、分类、生成等工作。那么可以总结出关于“如何找到函数f(x)”的方法论,可看作是机器学习三板斧。1、 定义一个函数集合2、 判断函数的好坏3、 选择最好的函数通过3,我们的目标是损失函数最小化那么,梯度下降法是目前机器学习、深度学习,解决...
2020-04-06 14:40:34 300
原创 第四周打卡:线性回归算法
前言线性回归,回归算法线性回归模型可以说是最重要的数学模型之一,很多模型都是建立在它的基础上,可以说是“模型之母”。先从简单线性回归模型开始(单输入,单输出)熟悉线性回归算法的数学思想,公式推导,主要是通过公式推导将数学模型转化为可编程的程序语言,方便调用。引出损失函数,还是通过数学公式的推导,对损失函数求最优解,即对公式推导,求最小损失函数导数为零时,可得损失函数的最值。简单线性回归...
2020-04-02 11:43:27 225
原创 第三周打卡:数据预处理与特征工程
1、前言数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已特征工程在机器学习中占据着重要地位定义:特征工程时利用数据领域的只是来创建能够使机器学习算法达到最佳性能的特征的过程。特征工程包括:数据预处理 Data preprocessing特征提取 Feature Extraction特征选择 Feature Selection特征构造 Feature Constru...
2020-04-01 14:12:48 489
原创 第二周打卡:如何评价模型的好坏
1、数据集拆分拿到数据集,训练出模型,在交付实际场景之前,需要对模型的使用效果进行评价,那么就需要一部分拥有标识的数据集,而训练模型所用到的模型再进行测试的话,意义不大,因为模型就是使用这部分数据训练出来的。所以就需要对原有数据集进行拆分,拆分方法有很多种:1.1 经验将数据集按照8:2的比例分为训练集和测试集,使用训练集训练出模型,用测试集进行模型测试1.2 留出法西瓜书第二章,将数...
2020-03-26 16:53:22 610
原创 第一周打卡:K近邻算法(KNN)
1、KNN的思想在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。通俗点就是说,需要判断一个样本的类别,就找离他最近的K的点,对这K个点的类别进行“多数服从少数”的投票,最后所得结果的类别就是这个样本的类别。KNN算法即可以做回归,也可以做分类。KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做分类预测时,...
2020-03-01 17:30:04 151
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人