第七周打卡:逻辑回归

1、前言

在kaggle数据竞赛网站中,LR算法出场率最高。
除了应用广泛外,LR的建模过程还体现了数据建模中很重要的思想:对问题划分层次,并利用非线性变换和线性模型的组合,将未知的复杂问题分解为已知的简单问题
可以说:理解好逻辑回归的细节,就掌握了数据建模的精髓。

2、什么是逻辑回归

逻辑回归虽说名字带有回归,但却是分类算法。
其原理是将样本的特征和样本发生的概率联系起来,即预测的是样本发生的概率,再通过阈值判定进行分类,由于预测的概率是连续变量,所以叫做逻辑回归算法。

2.1 假设函数推导

根据逻辑回归算法原理,求得样本发生的概率,再通过阈值判定,分为正例和反例,正例和反例的函数,其实是单位跃迁函数,但是简单的单位跃迁函数并不连续,所以使用sigmoid函数来代替单位跃迁函数。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、逻辑回归模型的损失函数

因为逻辑回归算法属于分类算法,最好的评价标准是分类准确率,但是算法模型预测值为连续变量,则需要变通一下,引入统计学先验概率
我们将损失函数分成两类:

  • 如果给定样本的真实类别y=1,则估计出来的概率p越小,损失函数越大(估计错误)
  • 如果给定样本的真实类别y=0,则估计出来的概率p越大,损失函数越大(估计错误)
    在这里插入图片描述
    分析上面的公式:
  • 当y=1时,损失函数的特点是,预测值越趋于0,损失越大;越趋于1,损失越小。
  • 当y=0时,损失函数的特点是,预测值越趋于1,损失越大;越趋于0,损失越小。
    刚好符合我们的期望损失函数,就是当模型预测失败时我们给予一个很大的损失,当模型预测成功时,给予一个很小的损失。
    然后将两类损失函数合一:
    在这里插入图片描述

4、损失函数的梯度下降法

对于损失函数:
在这里插入图片描述
对应的梯度为:
在这里插入图片描述
再对sigmoid函数进行链式求导。最后得到向量化后的梯度结果为:
在这里插入图片描述

5、python实现逻辑回归代码

(略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值