气候仿真软件:CLM (Community Land Model)_(14).CLM的数据准备

CLM的数据准备

在使用CLM进行气候仿真时,数据准备是至关重要的一步。CLM需要多种类型的输入数据来准确模拟陆地表面过程,包括气象数据、土壤属性数据、植被参数数据、地形数据等。本节将详细介绍这些数据的准备方法和格式要求,并提供具体的代码示例和数据样例。

在这里插入图片描述

气象数据准备

气象数据是CLM的核心输入之一,包括气温、降水、风速、相对湿度、太阳辐射等参数。这些数据通常需要以特定的格式提供给CLM,常见的格式包括NetCDF和ASCII。

气象数据格式

NetCDF格式

NetCDF(Network Common Data Form)是一种用于存储多维科学数据的文件格式。CLM通常使用NetCDF格式的气象数据文件进行仿真。以下是一个NetCDF气象数据文件的结构示例:


import netCDF4 as nc



# 创建一个新的NetCDF文件

dataset = nc.Dataset('meteorology.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

time = dataset.createVariable('time', 'i4', ('time',))

temperature = dataset.createVariable('temperature', 'f4', ('time', 'lat', 'lon'))

precipitation = dataset.createVariable('precipitation', 'f4', ('time', 'lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

time.units = 'hours since 1900-01-01 00:00:00.0'

temperature.units = 'K'

precipitation.units = 'kg m-2 s-1'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)

time[:] = range(0, 8760, 1)  # 一年的小时数



# 生成模拟数据

import numpy as np



# 模拟温度数据

temperature_data = np.random.normal(288, 5, (8760, 180, 360))

temperature[:,:,:] = temperature_data



# 模拟降水数据

precipitation_data = np.random.normal(0, 0.1, (8760, 180, 360))

precipitation[:,:,:] = precipitation_data



# 关闭文件

dataset.close()

ASCII格式

ASCII格式的气象数据通常用于小型区域或特定站点的仿真。以下是一个ASCII气象数据文件的示例:


# 气象数据文件示例

# 格式: 年 月 日 时 气温(K) 降水(kg m-2 s-1) 风速(m/s) 相对湿度(%) 太阳辐射(W/m2)



1990 01 01 00 283.15 0.0001 5.0 50 200

1990 01 01 01 283.15 0.0001 5.0 50 200

1990 01 01 02 283.15 0.0001 5.0 50 200

...

数据处理工具

常用的气象数据处理工具包括Python的pandasxarray库,以及NCO(NetCDF Operators)和CDO(Climate Data Operators)等命令行工具。

使用Python处理NetCDF数据

import xarray as xr



# 读取NetCDF文件

data = xr.open_dataset('meteorology.nc')



# 查看数据结构

print(data)



# 提取特定变量

temperature = data['temperature']

precipitation = data['precipitation']



# 数据筛选

january_data = data.sel(time=slice(0, 720))  # 提取1月的数据



# 数据转换

temperature_celsius = temperature - 273.15  # 将温度从K转换为°C



# 保存处理后的数据

january_data.to_netcdf('january_meteorology.nc')

temperature_celsius.to_netcdf('temperature_celsius.nc')

使用NCO处理NetCDF数据

NCO是一组命令行工具,用于处理NetCDF文件。以下是一些常用的NCO命令:


# 提取1月的数据

ncks -d time,0,720 meteorology.nc january_meteorology.nc



# 将温度从K转换为°C

ncap2 -s 'temperature=temperature-273.15' meteorology.nc temperature_celsius.nc

土壤属性数据准备

土壤属性数据包括土壤类型、土壤水分含量、土壤有机质含量等。这些数据通常需要以NetCDF格式提供给CLM。

土壤类型数据

土壤类型数据可以使用USDA土壤分类系统。以下是一个NetCDF土壤类型数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('soil_type.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

soil_type = dataset.createVariable('soil_type', 'i4', ('lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

soil_type.long_name = 'USDA Soil Type'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)



# 生成模拟数据

soil_type_data = np.random.randint(1, 25, (180, 360))

soil_type[:,:] = soil_type_data



# 关闭文件

dataset.close()

土壤水分含量数据

土壤水分含量数据通常以体积含水率表示。以下是一个NetCDF土壤水分含量数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('soil_moisture.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)

depth = dataset.createDimension('depth', 10)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

depths = dataset.createVariable('depth', 'f4', ('depth',))

soil_moisture = dataset.createVariable('soil_moisture', 'f4', ('lat', 'lon', 'depth'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

depths.units = 'm'

soil_moisture.units = 'm3/m3'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)

depths[:] = np.linspace(0, 2, 10)  # 10层,深度从0到2米



# 生成模拟数据

soil_moisture_data = np.random.normal(0.3, 0.1, (180, 360, 10))

soil_moisture[:,:,:] = soil_moisture_data



# 关闭文件

dataset.close()

植被参数数据准备

植被参数数据包括植被类型、叶面积指数(LAI)、植被覆盖度等。这些数据同样需要以NetCDF格式提供给CLM。

植被类型数据

植被类型数据可以使用IGBP植被分类系统。以下是一个NetCDF植被类型数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('vegetation_type.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

veg_type = dataset.createVariable('veg_type', 'i4', ('lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

veg_type.long_name = 'IGBP Vegetation Type'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)



# 生成模拟数据

veg_type_data = np.random.randint(1, 17, (180, 360))

veg_type[:,:] = veg_type_data



# 关闭文件

dataset.close()

叶面积指数(LAI)数据

叶面积指数(LAI)数据表示单位地表面积上的叶面积。以下是一个NetCDF LAI数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('lai.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)

time = dataset.createDimension('time', 8760)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

times = dataset.createVariable('time', 'i4', ('time',))

lai = dataset.createVariable('lai', 'f4', ('time', 'lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

times.units = 'hours since 1900-01-01 00:00:00.0'

lai.units = 'm2/m2'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)

times[:] = range(0, 8760, 1)



# 生成模拟数据

lai_data = np.random.normal(3, 1, (8760, 180, 360))

lai[:,:,:] = lai_data



# 关闭文件

dataset.close()

地形数据准备

地形数据包括海拔高度、坡度、坡向等。这些数据通常需要以NetCDF格式提供给CLM。

海拔高度数据

海拔高度数据表示地表的高度。以下是一个NetCDF海拔高度数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('elevation.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

elevation = dataset.createVariable('elevation', 'f4', ('lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

elevation.units = 'm'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)



# 生成模拟数据

elevation_data = np.random.normal(100, 500, (180, 360))

elevation[:,:] = elevation_data



# 关闭文件

dataset.close()

坡度和坡向数据

坡度数据表示地表的倾斜角度,坡向数据表示地表的倾斜方向。以下是一个NetCDF坡度和坡向数据文件的结构示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('slope_aspect.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

slope = dataset.createVariable('slope', 'f4', ('lat', 'lon'))

aspect = dataset.createVariable('aspect', 'f4', ('lat', 'lon'))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

slope.units = 'degrees'

aspect.units = 'degrees'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)



# 生成模拟数据

slope_data = np.random.uniform(0, 45, (180, 360))

aspect_data = np.random.uniform(0, 360, (180, 360))



slope[:,:] = slope_data

aspect[:,:] = aspect_data



# 关闭文件

dataset.close()

数据验证和预处理

在将数据输入CLM之前,需要进行验证和预处理,以确保数据的准确性和完整性。

数据验证

数据验证包括检查数据的范围、单位和缺失值。以下是一个数据验证的Python脚本示例:


import netCDF4 as nc

import numpy as np



# 读取NetCDF文件

dataset = nc.Dataset('elevation.nc', 'r')



# 提取变量

elevation = dataset['elevation'][:]



# 检查数据范围

if np.any(elevation < -400) or np.any(elevation > 8000):

    print("海拔高度数据超出合理范围")



# 检查缺失值

if np.any(np.isnan(elevation)):

    print("海拔高度数据存在缺失值")



# 关闭文件

dataset.close()

数据预处理

数据预处理包括数据插值、重投影和格式转换。以下是一个数据预处理的Python脚本示例:


import xarray as xr

import numpy as np

from scipy.interpolate import griddata



# 读取NetCDF文件

data = xr.open_dataset('elevation.nc')



# 提取变量

elevation = data['elevation']



# 生成新的网格

new_lats = np.linspace(-90, 90, 360)

new_lons = np.linspace(-180, 180, 720)



# 网格插值

new_elevation = griddata((elevation.lat.values, elevation.lon.values), 

                         elevation.values, 

                         (new_lats, new_lons), 

                         method='linear')



# 创建新的NetCDF文件

new_dataset = nc.Dataset('elevation_resampled.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

new_lat = new_dataset.createDimension('lat', 360)

new_lon = new_dataset.createDimension('lon', 720)



# 创建变量

new_lats_var = new_dataset.createVariable('lat', 'f4', ('lat',))

new_lons_var = new_dataset.createVariable('lon', 'f4', ('lon',))

new_elevation_var = new_dataset.createVariable('elevation', 'f4', ('lat', 'lon'))



# 设置变量属性

new_lats_var.units = 'degrees_north'

new_lons_var.units = 'degrees_east'

new_elevation_var.units = 'm'



# 填充数据

new_lats_var[:] = new_lats

new_lons_var[:] = new_lons

new_elevation_var[:,:] = new_elevation



# 关闭文件

new_dataset.close()

数据集成

将准备好的各种数据集成到一个NetCDF文件中,以便于CLM的输入。以下是一个数据集成的Python脚本示例:


import netCDF4 as nc

import numpy as np



# 创建一个新的NetCDF文件

dataset = nc.Dataset('clm_input.nc', 'w', format='NETCDF4')



# 创建纬度和经度维度

lat = dataset.createDimension('lat', 180)

lon = dataset.createDimension('lon', 360)

time = dataset.createDimension('time', 8760)

depth = dataset.createDimension('depth', 10)



# 创建变量

lats = dataset.createVariable('lat', 'f4', ('lat',))

lons = dataset.createVariable('lon', 'f4', ('lon',))

times = dataset.createVariable('time', 'i4', ('time',))

depths = dataset.createVariable('depth', 'f4', ('depth',))



# 设置变量属性

lats.units = 'degrees_north'

lons.units = 'degrees_east'

times.units = 'hours since 1900-01-01 00:00:00.0'

depths.units = 'm'



# 填充数据

lats[:] = range(-90, 90, 1)

lons[:] = range(-180, 180, 1)

times[:] = range(0, 8760, 1)  # 一年的小时数

depths[:] = np.linspace(0, 2, 10)  # 10层,深度从0到2米



# 读取气象数据

meteorology = nc.Dataset('meteorology.nc', 'r')

temperature = meteorology.variables['temperature'][:]

precipitation = meteorology.variables['precipitation'][:]



# 读取土壤类型数据

soil_type_data = nc.Dataset('soil_type.nc', 'r')

soil_type = soil_type_data.variables['soil_type'][:]



# 读取土壤水分含量数据

soil_moisture_data = nc.Dataset('soil_moisture.nc', 'r')

soil_moisture = soil_moisture_data.variables['soil_moisture'][:]



# 读取植被类型数据

vegetation_type_data = nc.Dataset('vegetation_type.nc', 'r')

veg_type = vegetation_type_data.variables['veg_type'][:]



# 读取叶面积指数(LAI)数据

lai_data = nc.Dataset('lai.nc', 'r')

lai = lai_data.variables['lai'][:]



# 读取海拔高度数据

elevation_data = nc.Dataset('elevation.nc', 'r')

elevation = elevation_data.variables['elevation'][:]



# 读取坡度和坡向数据

slope_aspect_data = nc.Dataset('slope_aspect.nc', 'r')

slope = slope_aspect_data.variables['slope'][:]

aspect = slope_aspect_data.variables['aspect'][:]



# 创建变量并填充数据

temperature_var = dataset.createVariable('temperature', 'f4', ('time', 'lat', 'lon'))

temperature_var.units = 'K'

temperature_var[:,:,:] = temperature



precipitation_var = dataset.createVariable('precipitation', 'f4', ('time', 'lat', 'lon'))

precipitation_var.units = 'kg m-2 s-1'

precipitation_var[:,:,:] = precipitation



soil_type_var = dataset.createVariable('soil_type', 'i4', ('lat', 'lon'))

soil_type_var.long_name = 'USDA Soil Type'

soil_type_var[:,:] = soil_type



soil_moisture_var = dataset.createVariable('soil_moisture', 'f4', ('lat', 'lon', 'depth'))

soil_moisture_var.units = 'm3/m3'

soil_moisture_var[:,:,:] = soil_moisture



veg_type_var = dataset.createVariable('veg_type', 'i4', ('lat', 'lon'))

veg_type_var.long_name = 'IGBP Vegetation Type'

veg_type_var[:,:] = veg_type



lai_var = dataset.createVariable('lai', 'f4', ('time', 'lat', 'lon'))

lai_var.units = 'm2/m2'

lai_var[:,:,:] = lai



elevation_var = dataset.createVariable('elevation', 'f4', ('lat', 'lon'))

elevation_var.units = 'm'

elevation_var[:,:] = elevation



slope_var = dataset.createVariable('slope', 'f4', ('lat', 'lon'))

slope_var.units = 'degrees'

slope_var[:,:] = slope



aspect_var = dataset.createVariable('aspect', 'f4', ('lat', 'lon'))

aspect_var.units = 'degrees'

aspect_var[:,:] = aspect



# 关闭文件

dataset.close()

数据集成步骤总结

  1. 创建新的NetCDF文件:定义纬度、经度、时间和深度维度。

  2. 创建变量:定义各个变量并设置其单位和属性。

  3. 读取各个数据文件:使用netCDF4库读取气象数据、土壤属性数据、植被参数数据和地形数据。

  4. 填充数据:将读取的数据填充到新的NetCDF文件中相应的变量中。

  5. 保存文件:关闭NetCDF文件,确保所有数据已正确写入。

通过上述步骤,您可以将各种不同类型的数据集成到一个NetCDF文件中,以便于CLM进行气候仿真。确保数据的准确性和完整性是进行仿真前的关键步骤。

内容概要:本文档详细介绍了Android高级控件的使用方法及其应用场景。首先讲解了下拉列表Spinner,包括其两种表现形式(下拉列表形式和对话框形式),并介绍了适配器Adapter的基础概念及其三种主要类型:数组适配器ArrayAdapter、简单适配器SimpleAdapter和基本适配器BaseAdapter,重点阐述了它们各自的特点和使用步骤。接着,文档对列表视图ListView进行了深入探讨,涉及分隔线样式、按压背景等属性的设置方式。随后,描述了网格视图GridView,详细解释了其拉伸模式的效果及取值。对于翻页视图ViewPager,不仅介绍了基本概念,还展示了翻页标签栏PagerTabStrip的具体应用,特别是用于创建启动引导页。最后,文档介绍了碎片Fragment的概念,强调了其在大屏设备上的优势,以及与ViewPager结合使用的实战案例——记账本应用。 适合人群:有一定Android开发基础,希望深入了解并掌握高级控件使用的开发者。 使用场景及目标:①掌握下拉列表、列表视图、网格视图、翻页视图等高级控件的实现细节;②理解适配器的作用及其不同类型的使用场景;③学会使用Fragment优化应用界面布局,提高用户体验;④通过具体案例(如记账本),将所学控件应用于实际开发中。 阅读建议:本文档内容详实,涵盖多种高级控件的理论知识与实践技巧。建议读者在学习过程中结合官方文档或相关资料进行对比研究,同时动手实践,以便更好地理解和掌握这些控件的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值