流体的本构方程

目录

1. 控制体表面应力张量

 2. 应变率张量与亥姆霍兹速度分解定理

 3. 流体的本构方程——应力张量与变形率张量的一般线性关系


1. 控制体表面应力张量

控制体x方向表面压力可见图:

那么作用于单位体积流体的表面压力为:

 注意,这里Px, Py, Pz均为向量。则其可分解为:

其中,第一个下标代表应力所在平面的外法线方向,第二个下标代表应力方向。这里,为了描述微元上的应力,将应力张量表示为:

则外法线单位矢量\overrightarrow{n} = [n_{x}\ n_{y}\ n_{z}] 方向上的表面应力(压力)为:

\tau_{n} = [\tau_{nx}\ \tau_{ny}\ \tau_{nz}] = \overrightarrow{n}[\tau ]

则单位体积流体的表面力为:

 2. 应变率张量与亥姆霍兹速度分解定理

将速度增量沿三个方向分解得

\delta V=\begin{bmatrix} \delta u \\ \delta v \\ \delta w \end{bmatrix}= \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}& \frac{\partial u}{\partial z} \\\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}& \frac{\partial v}{\partial z} \\\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}& \frac{\partial w}{\partial z} \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}

将系数矩阵进行分解得

\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}& \frac{\partial u}{\partial z} \\\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}& \frac{\partial v}{\partial z} \\\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}& \frac{\partial w}{\partial z} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x}=\xi _{xx} & \frac{1}{2}(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x})=\xi _{xy}& \frac{1}{2}(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})=\xi _{xz} & \\ \frac{1}{2}(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})=\xi _{yx}& \frac{\partial v}{\partial y}=\xi _{yy} & \frac{1}{2}(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y})=\xi _{yz} & \\ \frac{1}{2}(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z})=\xi _{zx}& \frac{1}{2}(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})=\xi _{zy} & \frac{\partial w}{\partial z}=\xi _{zz} & \end{bmatrix}+\begin{bmatrix} 0 & \frac{1}{2}(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x})=-\omega _{z}& \frac{1}{2}(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x})=\omega_{y} & \\ \frac{1}{2}(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y})=\omega _{z}& 0 & \frac{1}{2}(\frac{\partial v}{\partial z}-\frac{\partial w}{\partial y})=-\omega_{x} & \\ \frac{1}{2}(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z})=-\omega _{y}& \frac{1}{2}(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z})=\omega _{x} & 0& \end{bmatrix}

E=\begin{bmatrix} \xi _{xx}& \xi _{xy} &\xi _{xz} \\ \xi _{yx} & \xi _{yy}&\xi _{yz} \\ \xi _{zx}&\xi _{zy} & \xi _{zz} \end{bmatrix}\overrightarrow{\omega} =\omega_{x}\overrightarrow{i}+\omega_{y}\overrightarrow{j}+\omega_{z}\overrightarrow{k},\overrightarrow{\delta r} =x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}

称E为流体的应变率张量或变形速率张量,\overrightarrow{\omega} 为流体的转动角速度矢量,则:

\overrightarrow{V}(M)=\overrightarrow{V}(M_{0})+E\cdot \overrightarrow{\delta r}+\omega\times \overrightarrow{\delta r}

 其三项分别对应M点平动速度、流体变形速度、绕M中心圆转速度。

关于矩阵 E 和 \omega,从物理上解释,有:

\frac{\partial u}{\partial x}=\xi_{xx} 为相对伸长率; \frac{1}{2}(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x})=\xi _{xy}=\xi_{yx} 为平均角变形率,诸如此类推。

则,微团体积相对膨胀率可推得为div V=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, 而对于不可压缩流体,体积膨胀率为0。\overrightarrow{\omega}=\frac{1}{2}rot\overrightarrow{V}为流体微元旋转角速度。对于无旋流动,rot\overrightarrow{V}=0

 3. 流体的本构方程——应力张量与变形率张量的一般线性关系

 应力与变形速率之间存在线性关系,服从这种线性关系的流体称为牛顿流体。其满足牛顿内摩擦定律

\tau _{yx}=\mu \frac{du}{dy}

 在边界层内,垂直板方向速度v为0,则

\tau _{yx}=2\mu \xi_{yx}

 斯托克斯将牛顿内摩擦定律进行推广,即假设

1. 流体连续,其应力张量变形率张量线性函数

2. 流体是各向同性的,即它的性质与方向无关。无论坐标系如何选取,它的应力与变形率的关系是相同的。

3. 当流体静止,即变形率为零,流体中应力就是流体静压力。

之前我们知道:

对于静止流体与运动的无粘流体,不存在切应力分量,则: 

负号代表压力方向与微元外表面方向相反。

根据应力张量与变形率张量是线性关系和各向同性假设,应力张量和变形率张量可以写成:

参照牛顿内摩擦定律,认为 a=2\mu。对于系数b,由于b为标量,它应该由张量\tau\xi的分量中的坐标转换时不变的值组成。对于张量,取其第一不变量(即矩阵的迹)。

Tracer( \tau )=\xi_{xx}+\xi_{yy}+\xi_{zz}=div(\overrightarrow{u})

Tracer( \tau )=\tau_{xx}+\tau_{yy}+\tau_{zz}

 

 带入上式,则:

 左式的迹与右式的迹相等,则:

 

 静止情况下,div(\overrightarrow{u}) 值为零,且 \tau_{xx}=\tau_{yy}=\tau_{zz}=-p_{0},代入上式有:

使得上式恒成立,有,

 

 则可认为应力张量与变形率张量之间存在一般线性关系:、

 引入平均压强的概念,其一点的压强在各个方向是相等的,其值即为平均法向应力,有:

 

 令\lambda = -\frac{2}{3}\mu,成之为膨胀粘性系数,有:

若以u_{i} 和 x_{i} 代表速度和位移在 x,y,z 方向的分量,有:

即为可压缩流体的本构方程。虽然公式推导使用了不严格的假定,但其已经被实验广泛证实。

本文内容基本均来源于两个PPT:

https://wenku.baidu.com/view/f5f45506783e0912a3162a45.html

https://max.book118.com/html/2018/0526/168864127.shtm

前者较为通俗易懂,后者则给出了应力张量和应变率张量的详细讨论。如本文有何错误,欢迎指正,谢谢。

  • 12
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
计算流体力学(Computational Fluid Dynamics,简称CFD)是一种通过数值方法解决流体力学问题的工程学科。对于流体力学方程的数值求解,基于控制体积法的Navier-Stokes方程是其中最基本的方程。 Navier-Stokes方程是描述流体力学中运动的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。它是由质量守恒方程和牛顿运动方程得到的偏微分方程组。 质量守恒方程描述了流体的质量在空间和时间上的守恒,它的数学形式是连续性方程。动量守恒方程描述了流体中各部分之间动量的传递,它包括流体的加速度、压力、粘性力和体积力的影响。能量守恒方程描述了流体的能量在空间和时间上的守恒,它包括内能、压力和粘性导热的影响。 计算流体力学控制方程是指在求解CFD问题时所采用的各种数值方法所得到的方程组。这些方程组包括控制体积方程(基于质量守恒方程)、动量方程和能量方程。 计算流体力学控制方程的求解方法包括有限差分法、有限元法和有限体积法等。其中有限体积法是目前应用最为广泛的方法。有限体积法将计算区域划分为许多小的控制体积,对每个控制体积应用质量守恒方程、动量方程和能量方程,得到离散的代数方程。然后通过迭代计算,求解出流体流动的数值解。 总之,计算流体力学控制方程是基于Navier-Stokes方程的数值方法,在求解流体力学问题中起到关键作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值