流体力学基础 | 水沙运动控制方程组 N-S方程

目录

1 前言

2 流体运动方程

2.1 适用于所有流体的方程形式 

2.2 引入本构关系

2.3 不可压缩牛顿流体控制方程

3 泥沙输移方程

4 总结


1 前言

N-S方程是流体运动的基本控制方程,但其求解需要基于一系列假定对方程进行简化,并引入另外的关系式将方程组进行封闭。本文从水沙动力学的角度对N-S方程进行简化,以推得水沙动力学的三维基本控制方程。该方程与水流连续方程、泥沙连续方程一起构成水沙动力学的基本方程组。

基于此方程组,在水深或断面上进行积分平均可得到二维和一维的控制方程组,这些是本系列后面的内容。

2 流体运动方程

2.1 适用于所有流体的方程形式 

根据质量守恒和动量守恒,我们可以推求水沙混合体的连续方程和运动方程,在笛卡尔坐标系下以张量形式写作下式:

 \frac{\partial \rho}{\partial t}+\frac{\partial (\rho u_i)}{\partial x_j}=0

\frac{\partial \rho u_i}{\partial t}+\frac{\partial (\rho u_{i}u_j)}{\partial x_j} = F_i-\frac{\partial p}{\partial x_i}+\frac{\partial \tau _{ij}}{\partial x_i}

 其中t为时间;xi为笛卡尔坐标系系统的第i个维度;p为混合体的压力;τij为混合体受到的应力;Fi为i方向受到的外力,如重力。其中第二个式子即为N-S方程。

2.2 引入本构关系

此时方程组并不封闭,因此需要引入封闭模式。根据试验研究,当低含沙量时(含沙量小于200kg/m3)时,水沙混合体为牛顿流体,引入牛顿流体本构关系(牛顿内摩擦定律扩展至三维情况):

\tau_{ij}=2\mu _mD_{ij}-\frac{2}{3}\mu D_{kk}\delta _{ij}

其中μm为动力粘性系数;Dij为转换速率张量D_{ij}=(\frac{\partial u_i}{\partial x_j}+\frac {\partial{u_j}}{\partial x_j})/2 ;δij为克罗科内尔符号,即i=j时δij=1,否则为0.

当混合体的含沙量较高时,呈现非牛顿流体的性质,比如宾汉流体。宾汉流体的本构关系写作

\tau_{ij}=(2\mu_m+\frac{\tau_B}{I_2^{1/2}})(D_{ij}-\frac{1}{3}D_{kk}\delta_{ij})

 其中,τij为切应力,τB为屈服应力,η为塑性粘度,I_2=\frac{1}{2}(D_{ij}D_{ij}-\frac{1}{3}D_{kk}^2).

根据Stokes假设,不可压缩牛顿流体的本构关系可写为\tau_{ij}=\mu(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i})

2.3 不可压缩牛顿流体控制方程

将该本构关系代回到原N-S方程组中,得到

 \frac{\partial \rho}{\partial t}+\frac{\partial (\rho u_i)}{\partial x_j}=0

\frac{\partial \rho u_i}{\partial t}+\frac{\partial (\rho u_iu_j)}{\partial x_j}=F_i-\frac{\partial p}{\partial x_i}+\mu\frac{\partial ^2u_i}{\partial x_j\partial x_j}

 该方程组可用于描述和计算不可压缩牛顿流体单相层流和湍流的瞬时流动。对于湍流而言,想精确描述湍流结构需要极高的计算精度,直接求解该方程计算量很大,直接数值求解该方程组以求解湍流的方法称为DNS方法(Direct Numerical Simulation)。

对于含沙量较小的混合体,密度变化很小,该方程组可进一步简化为

 \frac{\partial ( u_i)}{\partial x_j}=0

\frac{\partial u_i}{\partial t}+\frac{\partial (u_iu_j)}{\partial x_j}=\frac{1}{\rho}F_i-\frac{1}{\rho}\frac{\partial p}{\partial x_i}+\frac{\mu}{\rho}\frac{\partial ^2u_i}{\partial x_j\partial x_j}

3 泥沙输移方程

根据质量守恒原理,可得

\frac{\partial c}{\partial t}+\frac{\partial (u_{si}c)}{\partial x_i} = 0 

泥沙运动速度usi在扩散方程中并不是独立变量 ,因此上式可写作

\frac{\partial c}{\partial t}+\frac{\partial (u_{i}c)}{\partial x_i} = -\frac{\partial }{\partial x_i}[(u_{si}-u_i)c] 

其中的usi-ui可以视作泥沙在混合体中的扩散速度,根据Wu & Wang (2000)的关系式

u_{si} - u_i = -\frac{\partial }{\partial x_i}(\omega _{sm}c \delta_{3i})

 其中w为泥沙的沉降速率,δ3i的下标3指的是与重力方向相同的铅直方向。

将该式子代回原方程可得 

\frac{\partial c}{\partial t}+\frac{\partial (u_{si}c)}{\partial x_i} = \frac{\partial }{\partial x_i}(\omega _{sm}c \delta_{3i}) 

注意一般该方程认为只适用于悬移质泥沙和低含沙量的情况,通常而言我们根据经验认为泥沙粒径小于1mm,并且体积含沙量小于0.1时适用该方程。 

4 总结

 以上,我们从适用于所有流体的基本控制方程(连续方程+N-S方程)简化为了适用于不可压缩牛顿流体的控制方程组,以及适用于细颗粒悬移质的泥沙输移方程。

总的来说,低含沙量时的两相流模型可以简化为清水流动和泥沙输移两个过程,因为通常情况下天然河道中的含沙量并不高,因此这种简化的对流扩散模型被广泛应用于河流动力学中。当然,对于水库异重流或者是黄河上高含沙水流等这些特殊情况,需要另外建立两相流模型,并考虑引入非牛顿流体本构关系进行模型封闭。

上面我们也写道了,该方程若用于求解湍流运动,则计算量很大。因此,雷诺提出了雷诺平均法则,对N-S方程进行雷诺时间平均,使其能够在一定程度上求解湍流。这些将在后面的内容中介绍。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值