使用本科知识进行流体力学基本方程推导

整理之前,认为以本科内容推导流体力学控制方程会更直观,但对比研究生课程内容后发现恰恰相反。研究生课程中的输运定理物理含义很清晰,流体粘性应力张量表达也更直观和简介;而本科生课程中的给出的公式形式是正确的,但推导过程却可能存在问题,尤其是涉及到可压缩流体的特殊性时。因此,这里先回顾下本科课程,稍后再整理研究生课程。

连续性方程

推导过程

先讨论 y 方向上的质量变化,自面abcd 流入控制体积的质量为面abcd 的面积 d x d z dxdz dxdz、时间 d t dt dt、面abcd上的流体沿 y 方向的单位质量通量 ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y \rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy ρvy21y(ρvy)dy 这三者的乘积,即
(a.0.1) [ ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t \left[\rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt \qquad \tag{a.0.1} [ρvy21y(ρvy)dy]dxdzdt(a.0.1)
同理由面efgh 流出的质量为
(a.0.2) [ ρ v y + 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t \left[\rho v_y +\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt \qquad \tag{a.0.2} [ρvy+21y(ρvy)dy]dxdzdt(a.0.2)
d t dt dt 时间内,控制体积内 y 方向上的质量损失为
(a.0.3) Δ m y = [ ρ v y + 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t − [ ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t = ∂ ρ v y ∂ y d x d y d z d t \Delta m_y = \left[\rho v_y +\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt-\left[\rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt =\frac{\partial \rho v_y}{\partial y}dxdydzdt \qquad \tag{a.0.3} Δmy=[ρvy+21y(ρvy)dy]dxdzdt[ρvy21y(ρvy)dy]dxdzdt=yρvydxdydzdt(a.0.3)
同理,x 和 z 方向上的质量损失为
(a.0.4) Δ m x = ∂ ρ v x ∂ x d x d y d z d t \Delta m_x = \frac{\partial \rho v_x}{\partial x}dxdydzdt \qquad \tag{a.0.4} Δmx=xρvxdxdydzdt(a.0.4)

(a.0.5) Δ m z = ∂ ρ v z ∂ z d x d y d z d t \Delta m_z = \frac{\partial \rho v_z}{\partial z}dxdydzdt \qquad \tag{a.0.5} Δmz=zρvzdxdydzdt(a.0.5)

故控制体积由于流体流动造成的质量损失为
(a.0.6) Δ m x + Δ m y + Δ m z = [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] d x d y d z d t \Delta m_x+\Delta m_y+\Delta m_z= \left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]dxdydzdt \qquad \tag{a.0.6} Δmx+Δmy+Δmz=[xρvx+xρvx+zρvz]dxdydzdt(a.0.6)
另一方面,(每个控制体积内的)流体密度也是时间的函数;t 时刻控制体积密度为 ρ \rho ρ,而 t+dt 时刻流体密度为 ρ + ∂ ρ ∂ t d t \rho+ \frac{\partial \rho}{\partial t}dt ρ+tρdt,故控制体积内由于密度变化引起的质量增加为
(a.0.7) Δ m t = ∂ ρ ∂ t d x d y d z d t \Delta m_t =\frac{\partial \rho}{\partial t}dxdydzdt \qquad \tag{a.0.7} Δmt=tρdxdydzdt(a.0.7)
由质量守恒可知
(a.0.8) Δ m t + ( Δ m x + Δ m y + Δ m z ) = 0 \Delta m_t+(\Delta m_x+\Delta m_y+\Delta m_z)=0 \qquad \tag{a.0.8} Δmt+(Δmx+Δmy+Δmz)=0(a.0.8)

(a.0.9) ∂ ρ ∂ t d x d y d z d t + [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] d x d y d z d t = 0 \frac{\partial \rho}{\partial t}dxdydzdt+\left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]dxdydzdt=0 \qquad \tag{a.0.9} tρdxdydzdt+[xρvx+xρvx+zρvz]dxdydzdt=0(a.0.9)
简化后得到连续性微分方程
(a.0.10) ∂ ρ ∂ t + [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] = 0 \frac{\partial \rho}{\partial t}+\left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]=0 \qquad \tag{a.0.10} tρ+[xρvx+xρvx+zρvz]=0(a.0.10)
向量形式写为
(a.0.10a) ∂ ρ ∂ t + ∇ ⋅ ( ρ v ) = 0 \frac{\partial \rho}{\partial t}+\nabla\cdot(\rho\boldsymbol{v})=0 \qquad \tag{a.0.10a} tρ+(ρv)=0(a.0.10a)
由于
(a.0.11) ∂ ρ v x ∂ x = ρ ∂ v x ∂ x + v x ∂ ρ ∂ x ∂ ρ v y ∂ y = ρ ∂ v y ∂ y + v y ∂ ρ ∂ y ∂ ρ v z ∂ z = ρ ∂ v z ∂ z x + v z ∂ ρ ∂ z } \left.\begin{aligned} \frac{\partial \rho v_x}{\partial x}=\rho \frac{\partial v_x}{\partial x}+ v_x\frac{\partial \rho}{\partial x}\\ \frac{\partial \rho v_y}{\partial y}=\rho \frac{\partial v_y}{\partial y}+ v_y\frac{\partial \rho}{\partial y}\\ \frac{\partial \rho v_z}{\partial z}=\rho \frac{\partial v_z}{\partial zx}+ v_z\frac{\partial \rho}{\partial z} \end{aligned}\right\} \qquad \tag{a.0.11} xρvx=ρxvx+vxxρyρvy=ρyvy+vyyρzρvz=ρzxvz+vzzρ(a.0.11)

(a.0.12) d ρ d t = ∂ ρ ∂ t + v x ∂ ρ ∂ x + v y ∂ ρ ∂ y + v z ∂ ρ ∂ z \frac{d \rho}{dt}=\frac{\partial \rho}{\partial t}+v_x\frac{\partial \rho}{\partial x}+v_y\frac{\partial \rho}{\partial y}+v_z\frac{\partial \rho}{\partial z} \qquad \tag{a.0.12} dtdρ=tρ+vxxρ+vyyρ+vzzρ(a.0.12)

代入连续性方程得
(a.0.13) d ρ d t + ρ ( ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z ) = 0 \frac{d \rho}{dt}+\rho\left(\frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+\frac{\partial v_z}{\partial z}\right)=0 \qquad \tag{a.0.13} dtdρ+ρ(xvx+yvy+zvz)=0(a.0.13)

(a.0.13a) 1 ρ d ρ d t + ( ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z ) = 0 \frac{1}{\rho}\frac{d \rho}{dt}+\left(\frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+\frac{\partial v_z}{\partial z}\right)=0 \qquad \tag{a.0.13a} ρ

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab是一种强大的数值计算和科学编程软件,它可以用于各种工程和科学领域的数值分、数据可视化和模拟。液压流体力学是研究液体在管道、阀门、泵等装置中的流动行为和力学性质的学科。 在Matlab中,可以使用各种工具箱和函数来进行液压流体力学的建模和分析。以下是一些常用的Matlab工具箱和函数: 1. Fluids工具箱:该工具箱提供了用于处理流体力学问题的函数和工具。它包括计算流体力学(CFD)模拟、流体流动分析、压力和速度场可视化等功能。 2. SimHydraulics工具箱:该工具箱专门用于建模和仿真液压和气动系统。它提供了各种液压元件(如阀门、泵、缸等)的建模组件,并可以进行系统级仿真和性能分析。 3. PDE工具箱:该工具箱用于求解偏微分方程,可以用于模拟液体在管道中的流动行为。通过定义适当的边界条件和初始条件,可以使用PDE工具箱求解液压流体力学问题。 4. Symbolic Math工具箱:该工具箱提供了符号计算功能,可以用于推导和求解液压流体力学中的方程。通过符号计算,可以得到精确的解析解或者进行符号化的分析。 5. MATLAB Function库:Matlab提供了丰富的数学函数和运算符,可以用于处理液压流体力学中的数值计算和数据处理。例如,可以使用Matlab的积分函数、求解方程的函数等来进行液压流体力学问题的数值求解。 以上是关于Matlab液压流体力学的简要介绍。如果你有任何进一步的问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值