使用本科知识进行流体力学基本方程推导

本文通过本科知识详细推导了流体力学的三大基本方程:连续性方程、欧拉方程和Navier-Stokes方程。在推导过程中,分析了各步骤和关键概念,如质量守恒、牛顿第二定律和粘性流体的本构关系。对于不可压缩流体,方程简化为熟知的形式,强调了动水压强和粘性在流体运动中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理之前,认为以本科内容推导流体力学控制方程会更直观,但对比研究生课程内容后发现恰恰相反。研究生课程中的输运定理物理含义很清晰,流体粘性应力张量表达也更直观和简介;而本科生课程中的给出的公式形式是正确的,但推导过程却可能存在问题,尤其是涉及到可压缩流体的特殊性时。因此,这里先回顾下本科课程,稍后再整理研究生课程。

连续性方程

推导过程

先讨论 y 方向上的质量变化,自面abcd 流入控制体积的质量为面abcd 的面积 d x d z dxdz dxdz、时间 d t dt dt、面abcd上的流体沿 y 方向的单位质量通量 ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y \rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy ρvy21y(ρvy)dy 这三者的乘积,即
(a.0.1) [ ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t \left[\rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt \qquad \tag{a.0.1} [ρvy21y(ρvy)dy]dxdzdt(a.0.1)
同理由面efgh 流出的质量为
(a.0.2) [ ρ v y + 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t \left[\rho v_y +\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt \qquad \tag{a.0.2} [ρvy+21y(ρvy)dy]dxdzdt(a.0.2)
d t dt dt 时间内,控制体积内 y 方向上的质量损失为
(a.0.3) Δ m y = [ ρ v y + 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t − [ ρ v y − 1 2 ∂ ( ρ v y ) ∂ y d y ] d x d z d t = ∂ ρ v y ∂ y d x d y d z d t \Delta m_y = \left[\rho v_y +\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt-\left[\rho v_y -\frac{1}{2}\frac{\partial(\rho v_y)}{\partial y}dy\right]dxdzdt =\frac{\partial \rho v_y}{\partial y}dxdydzdt \qquad \tag{a.0.3} Δmy=[ρvy+21y(ρvy)dy]dxdzdt[ρvy21y(ρvy)dy]dxdzdt=yρvydxdydzdt(a.0.3)
同理,x 和 z 方向上的质量损失为
(a.0.4) Δ m x = ∂ ρ v x ∂ x d x d y d z d t \Delta m_x = \frac{\partial \rho v_x}{\partial x}dxdydzdt \qquad \tag{a.0.4} Δmx=xρvxdxdydzdt(a.0.4)

(a.0.5) Δ m z = ∂ ρ v z ∂ z d x d y d z d t \Delta m_z = \frac{\partial \rho v_z}{\partial z}dxdydzdt \qquad \tag{a.0.5} Δmz=zρvzdxdydzdt(a.0.5)

故控制体积由于流体流动造成的质量损失为
(a.0.6) Δ m x + Δ m y + Δ m z = [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] d x d y d z d t \Delta m_x+\Delta m_y+\Delta m_z= \left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]dxdydzdt \qquad \tag{a.0.6} Δmx+Δmy+Δmz=[xρvx+xρvx+zρvz]dxdydzdt(a.0.6)
另一方面,(每个控制体积内的)流体密度也是时间的函数;t 时刻控制体积密度为 ρ \rho ρ,而 t+dt 时刻流体密度为 ρ + ∂ ρ ∂ t d t \rho+ \frac{\partial \rho}{\partial t}dt ρ+tρdt,故控制体积内由于密度变化引起的质量增加为
(a.0.7) Δ m t = ∂ ρ ∂ t d x d y d z d t \Delta m_t =\frac{\partial \rho}{\partial t}dxdydzdt \qquad \tag{a.0.7} Δmt=tρdxdydzdt(a.0.7)
由质量守恒可知
(a.0.8) Δ m t + ( Δ m x + Δ m y + Δ m z ) = 0 \Delta m_t+(\Delta m_x+\Delta m_y+\Delta m_z)=0 \qquad \tag{a.0.8} Δmt+(Δmx+Δmy+Δmz)=0(a.0.8)

(a.0.9) ∂ ρ ∂ t d x d y d z d t + [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] d x d y d z d t = 0 \frac{\partial \rho}{\partial t}dxdydzdt+\left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]dxdydzdt=0 \qquad \tag{a.0.9} tρdxdydzdt+[xρvx+xρvx+zρvz]dxdydzdt=0(a.0.9)
简化后得到连续性微分方程
(a.0.10) ∂ ρ ∂ t + [ ∂ ρ v x ∂ x + ∂ ρ v x ∂ x + ∂ ρ v z ∂ z ] = 0 \frac{\partial \rho}{\partial t}+\left[\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_x}{\partial x}+\frac{\partial \rho v_z}{\partial z}\right]=0 \qquad \tag{a.0.10} tρ+[xρvx+xρvx+zρvz]=0(a.0.10)
向量形式写为
(a.0.10a) ∂ ρ ∂ t + ∇ ⋅ ( ρ v ) = 0 \frac{\partial \rho}{\partial t}+\nabla\cdot(\rho\boldsymbol{v})=0 \qquad \tag{a.0.10a} tρ+(ρv)=0(a.0.10a)
由于
(a.0.11) ∂ ρ v x ∂ x = ρ ∂ v x ∂ x + v x ∂ ρ ∂ x ∂ ρ v y ∂ y = ρ ∂ v y ∂ y + v y ∂ ρ ∂ y ∂ ρ v z ∂ z = ρ ∂ v z ∂ z x + v z ∂ ρ ∂ z } \left.\begin{aligned} \frac{\partial \rho v_x}{\partial x}=\rho \frac{\partial v_x}{\partial x}+ v_x\frac{\partial \rho}{\partial x}\\ \frac{\partial \rho v_y}{\partial y}=\rho \frac{\partial v_y}{\partial y}+ v_y\frac{\partial \rho}{\partial y}\\ \frac{\partial \rho v_z}{\partial z}=\rho \frac{\partial v_z}{\partial zx}+ v_z\frac{\partial \rho}{\partial z} \end{aligned}\right\} \qquad \tag{a.0.11} xρvx=ρxvx+vxxρyρvy=ρyvy+vyyρzρvz=ρzxvz+vzzρ(a.0.11)

(a.0.12) d ρ d t = ∂ ρ ∂ t + v x ∂ ρ ∂ x + v y ∂ ρ ∂ y + v z ∂ ρ ∂ z \frac{d \rho}{dt}=\frac{\partial \rho}{\partial t}+v_x\frac{\partial \rho}{\partial x}+v_y\frac{\partial \rho}{\partial y}+v_z\frac{\partial \rho}{\partial z} \qquad \tag{a.0.12} dtdρ=tρ+vxxρ+vyyρ+vzzρ(a.0.12)

代入连续性方程得
(a.0.13) d ρ d t + ρ ( ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z ) = 0 \frac{d \rho}{dt}+\rho\left(\frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+\frac{\partial v_z}{\partial z}\right)=0 \qquad \tag{a.0.13} dtdρ+ρ(xvx+yvy+zvz)=0(a.0.13)

(a.0.13a) 1 ρ d ρ d t + ( ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z ) = 0 \frac{1}{\rho}\frac{d \rho}{dt}+\left(\frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+\frac{\partial v_z}{\partial z}\right)=0 \qquad \tag{a.0.13a} ρ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值