吴恩达跟OpenAI联合出了一个新课,《大模型通关指南》,看了真的很想说一句:
大佬们是真的懂我们普通人在学大模型时候卡住的点!
这门课一开篇就灵魂拷问:
「怎么调教一个大模型?为什么随便加个提示词,有时候灵有时候死?」
「到底啥时候该用微调(fine-tuning),啥时候只靠提示工程(prompt engineering)就够了?」
「API能调用是能调用,但怎么让模型稳定可控,真正用到实际项目里?」
这些都是很多人看着ChatGPT、Claude、Gemini发烧,但真正想自己动手做东西时,立刻头痛的地方。
而吴恩达和OpenAI的团队,真的一步步把这些卡点拎出来、细细讲清楚,而且很落地。
比如:
“只会调调API?”:
不是停留在教你怎么打API,而是带你系统学 prompt设计、评估、迭代,怎么一步步提升回答质量,让你不是靠运气在喂提示词。
“搞不清微调到底啥时候用?”:
课上专门开了模块对比传统微调和新的"Function Calling"、“Retrieval Augmented Generation (RAG)”,还讲了小数据量LoRA微调,告诉你不同业务场景应该怎么选,避免乱砸钱。
“模型效果怎么评估?”:
不像一般课程只讲训练,这里手把手教你设计评测集(evaluation set),教你怎么量化模型输出质量,怎么做A/B测试,让优化有标准有方向。
课程穿插了大量案例,比如:
教你用OpenAI API做一个智能客服系统
如何用RAG架构让文档QA系统理解超长内容
如何给模型加“记忆力”,避免每次都忘上下文
学完是真的可以直接动手做出小项目,不是纸上谈兵。
每一节课都围着“你学AI到底要用来干什么”来设计,而不是单纯堆知识点。而且讲解节奏很舒服,不是高高在上,而是用很友好的方式帮你从小白到能实战,手把手带。非常推荐
很多小伙伴问这个教程怎么观看学习,为了方便大家学习,我已经给大家整理好了,戳此免费获取>>>>>>