一、完美涡旋光束
1、完美涡旋光束概念
传统方法产生的涡旋光其光束半径会随拓扑荷数的增加而增加。为了满足涡旋光在传输、耦合时光束半径不宜过大的条件,迫切需要研究一种光束半径与拓扑荷数无关的涡旋光束。
美涡旋光场具有光束横截面半径不随拓扑荷值改变而改变的优点,在量子物理、量子操控、光学超分辨成像及量子通信等领域具有深远影响和重要地位。
目前,最常用的完美涡旋产生方法是利用锥透镜产生完美涡旋光场。2014年,Ostrovsky等人在此之前的研究基础上,利用了Bessel函数截断法,提出了一种既可以保证高质量又简化实验装置的实验方法。
2、完美涡旋光束原理
产生完美涡旋光是基本原理如下。贝塞尔-高斯光束是由贝塞尔方程和高斯光束组合而来,贝塞尔高斯光束在束腰半径处的光强表达式可写为:
式中r和分别表示两个极坐标,
表示l阶贝塞尔函数的第一类函数,
表示光束的径向波矢量,
表示光束界面一周内相位变化
的次数。对上式进行傅里叶变换可得:
式中表示光斑圆环的宽度,
表示完美涡旋光的半径。在近似条件下,
的大小可由
来表示。
要实现以上傅里叶变换,在光学中可以通过一个傅里叶变化透镜来实现。
从以上的分析中可以看出,完美涡旋光的半径是由光波长、透镜焦距和锥透镜参数决定的,与涡旋光的拓扑荷数没有关系,其半径也可以通过相应参数来调控。
二、matlab实现
1、源代码
clc
clear all;
% Definitions
Nx = 1280; % # of pixels in x-dimension of Cambridge SLM
Ny = 1024; % # of pixels in y-dimension of Cambridge SLM
C = ones(Ny,Nx); %初始化
w0 = 100; % Gaussian beam wist
w = 25; % width of the annular ring
lamda = 633*10^-6; % wavelength
f = 10^5; %focal length
d = 0.45; % axicon parameter
l=30; % Topological charge
A0 = 1; % Amplitude coefficient
nx = 200;
s = nx/Nx; % This parameter defines the fringe density.
phaseblaze = true;
imName='SLMpat'; % This is the name of the file that has the pattern
inName='SLMpatin';
s2s=num2str(s);
for x=1:Nx
for y=1:Ny
x0 = Nx/2; % coordinates of the center of the image
y0 = Ny/2;
xr=x-x0;
yr=y-y0;
r=sqrt(xr^2+yr^2); % radial coordinate
theta=atan2(yr,xr);% + n*(pi/9) ; % angular coordinate 可调相位角
g1(y,x) = A0*(1i^(l-1))*(w0/w)*exp(1i*d*r+1i*l*theta)*exp(-(r-(lamda*f/d))^2/w^2);
g2(y,x) = A0*(1i^(l-1))*(w0/w)*exp(1i*d*r+1i*-l*theta)*exp(-(r-(lamda*f/d))^2/w^2);
g(y,x) = g1(y,x);%+ g2(y,x);
Pg1 = g(y,x);
% 添加闪耀光栅
Pg2 = angle(Pg1) + 2*pi*s*xr;
if phaseblaze % Phase blaze
pgf = mod(Pg2,2*pi)/(2*pi); %phase mod 2 pi in units of 2pi
else % to do binary grating
pgf = mod(Pg2,2*pi)/(2*pi); %phase mod 2 pi in units of 2pi
if pgf >=0.5
pgf=0;
else
pgf=1;
end
end
C(y,x) = pgf*118/225;
end
end
intensity=abs(g);
figure();imshow(intensity,[],'border','tight'); colormap winter;
phase=angle(g);
figure();imshow(phase,[],'border','tight'); %colormap jet;
2、运行效果
拓扑荷数为30的完美涡旋光。
光强
相位