使用MATLAB完美复现涡旋光束

论文复现

话不多说,直接上图:(有需要的小伙伴直接微信搜索公众号:“XD悟理”,后台回复“复现3”就可以得到相应链接
在这里插入图片描述
这是一篇关于瑞丽粒子在不同极化状态涡旋光束下旋转效果。2018年诺贝尔奖颁给了“光镊”技术,因为大家可以关注一下相关的技术文件和论文成果。在这里我觉得这是一篇很好的入门介绍光粒子与光束之间相互作用的文章,文章从不同的极化状态的光束出发,分别计算四种极化光束对球形瑞丽粒子的作用,分别计算在光场中力场的分布,以及受力的大小随着不同坐标的变化。

光学涡旋光束携带光学轨道角动量 (OAM),可以在光学捕获中诱导捕获粒子的轨道运动。我们表明,涡旋光束的偏振态 (SOP) 会在一定程度上影响这种光诱导轨道运动的细节。数值结果表明,聚焦具有圆形、径向或方位角偏振的涡旋光束可以在被捕获的瑞利粒子上引起均匀的轨道运动,而在具有线性偏振的涡旋光束的焦场中,粒子经历非均匀的轨道运动。在前者中,具有圆偏振的涡旋光束在粒子上引起最大光学扭矩。此外,通过改变涡旋光束的拓扑电荷,具有圆偏振的涡旋光束产生优于其他三个涡旋光束的最佳扭矩。这些事实表明,圆偏振涡旋光束更适合旋转粒子。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面展示一些 内联代码片


% 绘图操作
% 部分代码展示
figure("name","Linear polarization");
pcolor(xm1,ym1,E1./max(max(E1)));
xlabel('\itx(\rm\lambda)','fontname','times new roman','fontsize',15); %x方向标注
ylabel('\ity(\rm\lambda)','fontname','times new roman','fontsize',15); %y方向标注
axis([min(min(xm1)),max(max(xm1)),min(min(ym1)),max(max(ym1))]); %区间范围
set(gca,'XTick',min(min(xm1)):lambda0:max(max(xm1)),'XTicklabel',{-2:1:2}); 
set(gca,'YTick',min(min(ym1)):lambda0:max(max(ym1)),'YTicklabel',{-2:1:2});
text(xm1(size(xm1,1)-10,size(xm1,2)-75),ym1(size(ym1,1)-10,size(ym1,2)-75),'\itx-\rmLPV_{3}','Color','w','FontSize',20,'FontName','times new roman');
set(gca,'fontname','times new roman','fontweight','bold');
clim([0,1]);
shading interp;
colormap hot;
colorbar;

%% ========================================================================
figure("name","the light indensity");
plot(xm1((size(xm1,1)+1)/2,:),E1((size(E1,1)+1)/2,:),'LineStyle','-','Color',[52, 73, 94]/255,'LineWidth',1.5);
hold on
plot(xm2((size(xm2,1)+1)/2,:),E2((size(E2,1)+1)/2,:),'LineStyle','--','Color',[155, 89, 182]/255,'LineWidth',1.5);
plot(xm3((size(xm3,1)+1)/2,:),E3((size(E3,1)+1)/2,:),'LineStyle',':','Color',[231, 76, 60]/255,'LineWidth',1.5);
plot(xm4((size(xm4,1)+1)/2,:),E4((size(E4,1)+1)/2,:),'LineStyle','-.','Color','b','LineWidth',1.5);
hold off
xlabel('\ity(\rm\mum)','fontname','times new roman','fontsize',15); %x方向标注
ylabel('|E|^2(V^2/m^2)','fontname','times new roman','fontsize',15);
axis([min(min(xm1)),max(max(xm1)),0,5e13]); %区间范围
set(gca,'XTick',min(min(xm1)):lambda0:max(max(xm1)),'XTicklabel',{-2:1:2});
% set(gca,'YTick',0:1e13:5e13,'YTicklabel',{0:1:5});
legend('x-LPV_{3}','CPV_{3}','RPV_{3}','LPV_{3}','fontname','times new roman','fontsize',12,'box','off');
set(gca,'LineWidth',1.2)
内容概要:本文深入探讨了2021年发表在Nature Communications上的关于全介质超表面完美矢量涡旋光束(PVVB)的研究成果。文章首先介绍了PVVB的基本概念和技术背景,强调了其在光量子通信领域的潜在应用价值。随后,详细解析了PVVB的设计原理,包括几何相位和传输相位的协同调控机制,以及如何通过优化纳米柱结构实现高效的自旋解耦。文中展示了具体的Matlab和Python代码片段,用于计算相位分布、筛选最佳单元结构,并进行FDTD仿真。此外,文章还讨论了庞加莱球生成技术和矢量光场重构的方法,验证了PVVB在不同拓扑荷数下的稳定性和宽带特性。最后,文章提到了PVVB在光学加密方面的应用潜力,特别是在提高二维码识别率方面取得了显著成效。 适合人群:从事光学工程、光量子通信、超表面材料研究的专业人士,以及对先进光束调控技术感兴趣的科研工作者。 使用场景及目标:适用于需要高效、稳定的光束调控解决方案的研究项目,旨在推动光量子通信、光学加密等领域的发展。具体应用场景包括但不限于:开发新型光通信系统、设计高性能光学加密设备、探索新的光镊技术等。 其他说明:文章提供了详细的实验数据和仿真结果对比,有助于读者更好地理解和复现实验过程。同时,文中提及的技术细节对于进步优化PVVB性能具有重要指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值