lgb+随机搜索流程及代码
LightGBM简介
LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法,他的特点是分布和高效的,他主要有以下优势:
1)更快的训练效率
2)低内存使用
3)更高的准确率
4)支持并行化学习
5)可以处理大规模数据
随机搜索简介
随机搜索的思想和网格搜索比较相似,只是不再测试上界和下界之间的所有值,只是在搜索范围中随机取样本点。它的理论依据是,如果随即样本点集足够大,那么也可以找到全局的最大或最小值,或它们的近似值。通过对搜索范围的随机取样,随机搜索一般会比网格搜索要快一些。
RandomSearchCV随机搜索策略为:
(a)对于搜索范围是distribution的超参数,根据给定的distribution随机采样;
(b)对于搜索范围是list的超参数,在给定的list中等概率采样;
(c)对a、b两步中得到的n_iter组采样结果,进行遍历。
(d)如果给定的搜索范围均为list,则不放回抽样n_iter次。
lgb+RandomSearchCV使用代码:
"""
配置固定的参数
"""
other_params = {'boosting_type' : 'gbdt',