geetest-cracker 和 geetest-solver 这样的库通常是用来自动化解决极验(Geetest)验证码的,但它们并不是官方提供的库,而是由社区开发者创建的,用于研究和测试目的。

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
import cv2
import numpy as np

def solve_geetest(driver):
    # 获取验证码图片
    bg_img = driver.find_element(By.CLASS_NAME, "geetest_bg_slice").screenshot_as_png
    bg_img = np.array(bytearray(bg_img), dtype=np.uint8)
    bg_img = cv2.imdecode(bg_img, cv2.IMREAD_COLOR)

    # 获取滑块图片
    slide_img = driver.find_element(By.CLASS_NAME, "geetest_slider_button").screenshot_as_png
    slide_img = np.array(bytearray(slide_img), dtype=np.uint8)
    slide_img = cv2.imdecode(slide_img, cv2.IMREAD_COLOR)

    # 图像处理,寻找缺口位置
    # 这里省略具体的图像处理代码,通常涉及到灰度化、二值化、边缘检测等步骤

    # 假设我们找到了缺口位置
    gap_position = find_gap_position(bg_img)

    # 控制滑块移动到指定位置
    slider = driver.find_element(By.CLASS_NAME, "geetest_slider_button")
    action_chains = ActionChains(driver)
    action_chains.click_and_hold(slider).perform()
    action_chains.move_by_offset(gap_position, 0).release().perform()

# 主函数
if __name__ == "__main__":
    options = Options()
    options.headless = True  # 可选,开启无头模式
    driver = webdriver.Chrome(options=options)

    driver.get("https://your-target-website.com/login")

    # 填写用户名和密码
    username = driver.find_element(By.ID, "username")
    password = driver.find_element(By.ID, "password")
    username.send_keys("your_username")
    password.send_keys("your_password")

    # 触发验证码
    login_button = driver.find_element(By.ID, "login_button")
    login_button.click()

    # 解决验证码
    solve_geetest(driver)

    # 登录
    login_button.click()

    # 等待登录完成
    # ...

    driver.quit()
import cv2
import numpy as np
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.by import By
from selenium import webdriver

def find_gap_position(bg_img):
    # 将背景图片转换为灰度图
    gray = cv2.cvtColor(bg_img, cv2.COLOR_BGR2GRAY)

    # 二值化处理,以便更好地识别边缘
    _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

    # 边缘检测
    edges = cv2.Canny(thresh, 100, 200)

    # 寻找轮廓
    contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 寻找最大的轮廓,这通常代表缺口
    max_contour = max(contours, key=cv2.contourArea)

    # 计算轮廓的边界框
    x, y, w, h = cv2.boundingRect(max_contour)

    # 缺口位置通常为边界框的左上角坐标x
    gap_position = x

    return gap_position

# 主函数
if __name__ == "__main__":
    options = webdriver.ChromeOptions()
    options.headless = True  # 开启无头模式
    driver = webdriver.Chrome(options=options)

    driver.get("https://your-target-website.com/login")

    # 获取背景图片
    bg_img = driver.find_element(By.CLASS_NAME, "geetest_bg_slice").screenshot_as_png
    bg_img = np.array(bytearray(bg_img), dtype=np.uint8)
    bg_img = cv2.imdecode(bg_img, cv2.IMREAD_COLOR)

    # 获取滑块图片
    slide_img = driver.find_element(By.CLASS_NAME, "geetest_slider_button").screenshot_as_png
    slide_img = np.array(bytearray(slide_img), dtype=np.uint8)
    slide_img = cv2.imdecode(slide_img, cv2.IMREAD_COLOR)

    # 图像处理,寻找缺口位置
    gap_position = find_gap_position(bg_img)

    # 控制滑块移动到指定位置
    slider = driver.find_element(By.CLASS_NAME, "geetest_slider_button")
    action_chains = ActionChains(driver)
    action_chains.click_and_hold(slider).perform()
    action_chains.move_by_offset(gap_position, 0).release().perform()

    # 登录操作
    # ...

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PyAIGCMaster

1毛钱也是爱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值