【论文泛读】Neural Data-to-Text Generation via Jointly Learning the Segmentation and Correspondence

作者:Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu and Dietrich Klakow

摘要

神经注意力机制模型(neural attention model)在数据生到文本任务上已经几乎可以生成通顺的句子
问题
会面临信息损失、重复和不真实的问题。由于神经网络的黑盒特性,从根本上规避这些问题非常困难。
解决对策
提出显式地把文本分成几个片段,每个片段对应数据(data)的某个域(field)。分段和对应关系不需要事先标注,可以通过线性规划自动地在训练过程中学习出来。同时我们使用后验正则化方法(posterior regularization)去有效控制分段的粒度。
创新点

  • 在 E2E 和 WebNLG 两个数据集上,我们的模型表现都胜过了神经注意力机制模型。
  • 显式反映了文本的片段和对应关系,整个模型完全可解释可控制,在多样性、信息真实度、重复和完整度上也都表现更好。

参考文章

ACL2020 的一些文章

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪里摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值