作者:Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu and Dietrich Klakow
摘要
神经注意力机制模型(neural attention model)在数据生到文本任务上已经几乎可以生成通顺的句子
问题
会面临信息损失、重复和不真实的问题。由于神经网络的黑盒特性,从根本上规避这些问题非常困难。
解决对策
提出显式地把文本分成几个片段,每个片段对应数据(data)的某个域(field)。分段和对应关系不需要事先标注,可以通过线性规划自动地在训练过程中学习出来。同时我们使用后验正则化方法(posterior regularization)去有效控制分段的粒度。
创新点
- 在 E2E 和 WebNLG 两个数据集上,我们的模型表现都胜过了神经注意力机制模型。
- 显式反映了文本的片段和对应关系,整个模型完全可解释可控制,在多样性、信息真实度、重复和完整度上也都表现更好。