人工智能
「已注销」
自认为自己可以做数学的人工智能研究者;梦想是钢琴家Olga Scheps能跟我说句话;专业毛子鉴赏师和挨骂师;为了接触毛子去跳芭蕾和练体操的无耻人士。
展开
-
头疼脑热的一天
说句实话,今天看了一天paper,也不知道看出来了个鬼。一直想研究在Transformer架构上怎么能搞点trick出来。看了Switch Transformer,得到概念基本也就是那些。目前看来要是再去看的话,恐怕就只能看CV了。一堆其他设计当然也可以尝试,最近居然还出现了一个Transformer-in-Transformer,不过似乎还是CV。至于RL,基本上各种attention网上怼。我还是没太明白这里面的一些基本脉络。...原创 2021-10-28 18:22:37 · 251 阅读 · 0 评论 -
一些乱七八糟的关于RL和RS的调研
Overleaf, Online LaTeX Editorhttps://www.overleaf.com/read/fwptsnbcvkcg大部分写到这里了。说句实话,RS这边感觉很难(可能是我太菜了)整理出来一个脉络,基本上大家都可以自己讲一个自己的故事就完毕了。从网络设计上来看,很难找到一个通用的trick。我明天继续搞。...原创 2021-10-27 18:50:40 · 324 阅读 · 0 评论 -
RS脑洞及论文集锦
最近本江湖骗子写本子写多了,但是突然发现RS的东西还是挺好玩的。这里面有很多东西我都没有意识到。在这种情况下,因为CSDN写起来太散了。我干脆建了一个Latex文档用英文写。RL脑洞集锦https://www.overleaf.com/read/fwptsnbcvkcg...原创 2021-10-15 06:06:13 · 144 阅读 · 0 评论 -
比较水的一天:看了两篇联邦学习的内容
今天一天整体比较水,主要是需要赶一个本子,所以大概看了两篇联邦学习的东西。说句实话,我对这个领域真的不是十分了解,但是从个人感觉来说,除去密码学的东西真的不懂,整体来说,我感觉还是在一个比较宽泛的设定下,研究怎么把各种成熟方法搬过去的学科。学术上大家关不关心我不知道,但是整体来说,应用上最近国家似乎要搞实验导致很多类似的要求。SecureBoost: A Lossless Federated Learning Framework是个人感觉最实用的,也是写的很清楚的一篇文章。大体来说,这篇文章好就好在作者原创 2021-10-09 12:32:08 · 413 阅读 · 0 评论 -
几篇很神奇的文章
Ffjord虽然是很老的一篇文章,但是这个想法真的很惊艳。这里面最惊艳的大概就是把Normalizing Flow做成了连续形式,然后根据一个ODE的解法来进行。对于数学基础好的同学,这里面最重要的可以学习的是关于处理复杂度的处理,和Performer能学到的东西很类似。BYOL是一个非常有意思的文章。在我印象中,例如基本依赖于负样本,类似于Triplet Mining。在相当的时间里面,我一直认为Constrast Learning的主要目的还是引入负样本。但是这篇文章告诉你,其实引入负样本反倒是不靠原创 2021-10-08 20:00:00 · 395 阅读 · 0 评论 -
ResSys综合github库方向
大概今天下午都在吹NB。大体来说,想把之前的一些项目都出来。所以呢,就做了这么一个库。GitHub - rwbfd/SmartRechttps://github.com/rwbfd/SmartRec大概来说,大部分研究性质的都会放在私有库知道paper成型。但是通用的一些东西已经会放出来了。里面东西很多,其中Offline RL和Representation部分还在写。今晚会更新第二版。懒得到时候再写CSDN了。所以现在先放出来。...原创 2021-09-30 19:39:17 · 203 阅读 · 0 评论 -
RecSys继续看热闹
说句实话,RecSys还真是一个挺有意思的领域。大部分paper的话非常容易去读,因为大部分思是通用的;另外结构化数据集这个也是比较有挑战的。此外,我发现很多人在发paper的时候都会借助于其他领域的思想。当然,这是不是纯粹为了创新而创新咱不说,但是确实很让我开阔眼界。Self-supervised Graph Learning for Recommendation这篇是我觉得最有意思的。个人感觉大体来说,思路是用Random Dropout模仿NLP的Mask;紧接着用Contrast Learnin原创 2021-09-29 16:12:23 · 211 阅读 · 0 评论 -
7月16日论文推荐;以及求助RL论文
说句实话,今天两个小时就看了三篇论文。一个小时看的是摘要,还有一个小时看得是数学推导。我个人对研究一点感觉都没有,所以说了千万各位老大不要拍我,但是感觉目前RL,尤其是DeepMind的研究越来越从实用算法比较进入到数学推导了。并不是说数学推导不好,但是作为一个没有追求的人,的确是想看看RL算法当中一些实用的内容。On The Effect of Auxiliary Tasks on Representation Dynamics的思路还是很清奇的。从整体来说,这篇文章主要考虑的是从数学角度看Auxil原创 2021-07-16 18:00:33 · 273 阅读 · 1 评论 -
7月15日:paper推荐
这段时间一直很忙(懒),所以就没写paper。今天开始一定要开始写!(然后明天就放弃)。Vector Quantized Models for Planning是一篇特别有意思的paper,因为之前DreamerV2就是把复杂的问题改成离散化,结果效果巨好。这一篇可以说是以这个为基础的。Return-based Scaling: Yet Another Normalisation Trick for Deep RL这篇很有意思,原因是他想法很简单,但是解决了一个很复杂的问题,就是RL当中的Retur原创 2021-07-15 18:12:36 · 251 阅读 · 0 评论 -
2021-05-19 关于RL探索的一些论文
最近小伙伴在研究RL当中的encoder refinement,我就看了一眼exploration。有时候一个着不好用,可能得两个着或者三个着,不行还得马大师出面一下。先说我们的基础是DreamerV1和DreamerV2。这两篇文章细节相当复杂,但是相当有意思。我建议对Model Based RL感兴趣的同学仔细阅读一下。此外,在这个过程中,目前揪出来的encoding refinement相关的还有Normalizing Flow。大家也可以看看。关于Exploration,大概最主要的例子都是蒙特原创 2021-05-19 10:58:23 · 259 阅读 · 0 评论 -
2021-05-08论文
最近一直懒,没更新论文。虽然我向天发誓我论文一直在读的(天:我才不相信你呢)。总之最近要读的论文比较杂,主要是Contrastive Learning+Exploration in RL+Generation。想到哪里说到哪里吧。SimCLR估计大家都知道了,大体就是对于不同的instance之间做contrast,如图注意哈,这里面有两个有意思的东西,首先那个fff不要小看它,这个metric learning的思想会改变整体的效果;第二个就是他的batch size得超级大。为了解决超级大的问题原创 2021-05-18 20:22:29 · 391 阅读 · 4 评论 -
2021-05-07 找到了一个特别赞的RL训练技巧的合集
废话不多说,看这里。转载 2021-05-07 23:24:52 · 321 阅读 · 1 评论 -
2021-05-06论文摘要:酷炫的Skip Connection
之前说过每天大概要搞出来5篇paper,结果果然翘了。为了能够搞出来,现在我们就把这些任务放在CSDN上吧。事实证明,这个世界上有大一堆非常有趣的关于Batch Normalization,Skip Connection之类的东西。下面是几篇文章。ReZero这篇文章列了几个简单的方法。具体见图:如果这个不够酷炫的话,那么IC这篇就更有意思了。基本思路是加一个Whitening。一些其他关于Layernorm的讨论引发了这一堆各种各样的连接法关于这个,Facebook不太高兴,于是在训练更原创 2021-05-06 18:20:31 · 913 阅读 · 6 评论 -
关于机器学习岗位几个不恰实际的期望
最近在授课和工作的过程中,接触了一些入门机器学习的同学。客观来说,很多人在进入这个领域时候,第一个往往是“人傻钱多”。“人傻”这话当然是不能给领导说的,而且说句实话机器学习领域目前行内的傻子已经越来越少了。但是“钱多”这件事情肯定是有原因的,如果机器学习领域是三天半俗称月薪八万的话,估计我楼上菜市场都要关门因为大家全去阿里机器学习去了吧。当然了,如果基础差或者觉得距离远这件事情不是一件可怕的事情。可怕的是一些人对于机器学习,或者是工作这件事情有不切实际的想法,以至于自己虽然说自己很想要这个岗位,实际上却一原创 2021-04-01 12:26:58 · 1776 阅读 · 5 评论 -
关于CSDN路线图的说明和致歉
在年前,很有幸的参与到CSDN AI工程师学习路线图的制作当中。这件事情大体是年前一流科技的老师木联系我让我写一下AI工程师的一些进阶路线图。这件事情我很荣幸,但是也很忐忑,因为我相信我一定得罪了很多大佬,因为纯粹从技术上角度,我其实是没有资格出这个路线图的。如果真的要出这个路线图,可能一个人都不够,得是hinton,lecun这种大佬商量了很久以后出的。但是另一方面,目前有的一些路线图,至少在我看来,的确是很糟糕的。比如说NLP工程师路线图还是停留在TextCNN和BERT,那基本就意味着写这个的人可能真原创 2021-02-08 16:34:25 · 2063 阅读 · 3 评论 -
关于pytorch当中的model.eval()和requires_grad=False
在做Meta Learning的时候,经常需要将一些梯度后向传导停住在某些层。但这不意味着我仅仅调用required_gradient=False就可以了。在一些层,例如dropout层,用于训练和用于推断表现不一样。所以说一般建议的是用model.eval()方法。这个小错有时候能导致很大的困难,例如预测时候突然精度变得特别差。...原创 2021-01-28 09:41:43 · 1726 阅读 · 0 评论 -
如何“傍”大牛
先声明一下啊,这个标题纯粹是标题党。嗯,我先去死三分钟。死回来了,下面来说一下这个问题。简单来说,这篇博客要解决的问题是,如何想办法让真正有资格给你作出方向性指导的人。要说的比较多,各位看官别着急。如何定义“大牛”和“牛人”牛人很好定义。简单来说,但凡是我可以有可以跟着学的,并且这个东西是符合我三观的,都应该称之为牛人。不符合三观例如怎么漏肉之类。符合三观的可以很简单,比如说就是一个举手投足,比如说最近我见到的姜子牙的动漫组的人,哪怕能告诉你真正的方向,我们就应该称之为牛人。几千年前有个姓孔的山东大汉原创 2021-01-24 15:37:33 · 1115 阅读 · 2 评论 -
关于预训练语言的一些事情:谷歌那个1.3trillion的模型,以及驳斥某些胡说八道的结论
由于最近跟DeepMind的合作,我们可以训练非常大的预训练语言模型。在这个过程中,浏览中文社区时候,又让我看到了让我想吐的大牛散播谣言,加上最近谷歌那个1.3trillion的模型,又被吹疯了,然后又是胡言乱语。强调几点:即使不是100%,中国大部分研究根本没办法研究预训练语言模型,因为耗费算力太大。我们跟deepmind合作的算力是TPU V3-2048, 大概是20000块V100,实际上肯定不会相差这么小,我们自己根据TPU V3-64常年测试的结果,发现大概其实应该是12万块V100左右。没原创 2021-01-15 12:31:47 · 949 阅读 · 1 评论 -
Model-based Reinforcemet Learning
从目前来看,当初所说的各种酷炫的RL算法很有可能(至少在经典问题上),被model-based方法取代。目前一个很强的算法是dreamer,而且他可以很好的扩展,建议大量读他相关论文。在这方面,如果需要一个初级介绍的话这个博客非常好。...原创 2021-01-15 11:08:33 · 230 阅读 · 1 评论 -
关于所谓强人工智能
有人说数理逻辑+深度学习就等于强人工智能。但是说句实话,这些都是概念。我理解数理逻辑在其中的作用。如果感兴趣的,可以看这本书。但是说句实话,真正逻辑推导能做到很好是很难的一件事情,并不用说跟深度学习模型结合。但是也不是说没有做的,或者该领域就没有意义。这篇文章是我感觉做的最扎实的。可以看看他的后续工作。...原创 2021-01-08 15:46:41 · 196 阅读 · 0 评论 -
关于PyTorch XLA的问题以及为啥现在开源代码都要拼手速
PyTorch和TF在处理TPU训练上有一个明显的不同,那就是PyTorch缺少steps_per_execution这个参数。简单来说,TF可以一次喂给TPU一堆东西,而PyTorch XLA不可以。前两天,刚刚提了这个bug。得到回复知道怎么修了,结果人家官方有个人18个小时提出来了。Anyway,这段代码是核心:from __future__ import divisionfrom __future__ import print_functionfrom six import iterite原创 2021-01-07 22:58:14 · 1542 阅读 · 2 评论 -
Jax Entmax Alpha激活函数
这篇文章介绍了一个叫做EntMax-α\alphaα的激活函数。当α=1\alpha=1α=1时,该激活函数成为了softmax,而α=2\alpha=2α=2时,则为sparsemax。这个研究在NLP领域倒是没有掀起什么风浪,但是在表格化挖掘却因为TabNet火了。把这个作为例子,是一个很好的jax的使用练习。代码在这里。还在优化中。一些flax和jax的补充在并入到官方之前,可以在我的github找到。绝对不保证实践正确。Use with caution。不管怎么说,代码在这里。import原创 2021-01-07 22:25:12 · 1101 阅读 · 0 评论 -
(转载)增强学习一个很好的汇总
废话不说,上链接。[下载地址]如下。(https://www.jair.org/index.php/jair/article/download/12412/26638)原创 2021-01-05 21:09:38 · 167 阅读 · 1 评论 -
(搬运)Triplet Loss Mining:介绍实现
Triplet Loss Mining从最广义的角度来说,就是说每次训练逐渐训练越来越困难的样本。多余的不说。这个介绍和这个代码可以尝试。其实这个idea可能不仅仅适用于triplet loss。很期待有人能进行实验。...转载 2021-01-04 17:09:00 · 346 阅读 · 0 评论 -
如何区分真大佬和伪大佬
中国大概99%的都是伪大佬吧,伪大佬自称神,自称巨佬,自称远古巨神等等,但是说句实话,大部分恐怕都没接触过大佬圈。要区分很简单:伪大佬很喜欢自我抬高,每天到处写博客发自己的东西,显示自己实力高强;真大佬最怕自我抬高,因为到处来一帮想白嫖的;伪大佬闲,闲的体现就是大量的时间做宣传自己的事情;真大佬你发他邮件未必有时间理你;伪大佬喜欢盗用别人成果,比如说明明是谷歌的,伪大佬会说我自研的啥啥啥;真大佬从来不敢盗用,在学术圈臭了就不用混了;伪大佬看不起别人,认为回答别人问题是耽误自己时间,不如给自己造神原创 2021-01-04 10:42:30 · 1690 阅读 · 1 评论 -
关于印度外包的情况:以及坐井观天的危险
我知道网上对于所谓阿三的外包问题一直是觉得特别简直是low到极点,知乎上还有大佬专门diss印度外包。但是另一方面,从外包市场来说,像中国的头部外包,姑且不说又贵又不好用,姑且不说英语不好所以不被美国用,我们再去掉所有政治因素。如果公平比较,我觉得大部分大厂的大牛可能打不过印度的高年级本科生。我来说说昨天发生了一件什么事情,我昨天联系外包的时候,突然被一个印度的学生(本科生三年级),说想接点外包的活。来自于Indian Institute of Science。一直跟我聊说老板给个机会,一直跟我聊说原创 2021-01-04 09:32:49 · 3228 阅读 · 4 评论 -
关于batch norm
BatchNorm大家都知道,但是最近实验发现,这玩意的影响比想象大得多。比如说有人发现TabNet的实验,如果BatchNorm实现错了,整个训练最后就会崩。这方面有两个资料。Four Things Everyone Should Know to Improve Batch Normalization相当好玩,实现起来不难。如果实现都不愿意实现,那么恭喜你这个repo帮你做好了。最后,实现normalization和dropout到底谁先谁后一直打得你死我活。Rethinking the Usage原创 2021-01-02 08:24:13 · 190 阅读 · 0 评论 -
关于Residual Connection
大家都知道ResNet(所以下次培训机构在8888搞定resnet时候就别去了),但是其实那个ResNet这个玩意有很多很有意思的东西。不说多了,第一篇论文ReZero里面讲了一些对ResNet的改进,注意里面有个综述部分。相当好玩。第二篇论文更有意思,Rethinking Skip Connection with Layer Normalization考虑了一个其实很重要的问题,就是LayerNorm的问题。Batch Normalization的算法其实水很深,并且有时候能起奇效。最关键,这俩玩意原创 2021-01-02 08:17:42 · 474 阅读 · 0 评论 -
找比赛相关论文的一些废话
之前说过,研究比赛相关论文的可能是很好的。但是不见得好找。这里面稍微说一下吧。Kaggle大型比赛相对来说还是靠谱的,有些小比赛稍微有点诡异。Kaggle一般直接搜索就行。大部分会有kernel。Kaggle相对缺点是,比如说我关于Object Tracking,但不是每年都会有比赛。国内的话,介绍这个的,我看得不多。这个是不错的。目前国内公众号主要目前注水太多,好多公众号开始时候还不错,但是后来就。。。你知道的。会议会议的话,其实关于自己喜欢的领域就好了。还是说Tracking。比如说VOT这种原创 2021-01-02 08:11:17 · 157 阅读 · 0 评论 -
如何读AI论文
这两天吧,看到了很多奇事。先说说昨天开课吧某业界知名老师、中科院天才博士在讲主动驾驶算法选型时候的奇闻奇事吧。首先该老师表示自己所有论文只要三分钟就能读完,而且自动驾驶也没有几篇论文。所以应该先去arxiv找,然后如果选型,找个顶会就行了。估计不说以上多少错误啊,接下来一句话把我逗了了。我在评论里面说要注意顶会论文也不是都可以复现的,比如说nips里的论文都不一定能复现。老师回答是,你听不懂我话么?我说顶会,nips是什么东西啊?至于后来老师非要说服我中科院CV的博士都没听过nips的事情下个帖子再说。这原创 2021-01-01 22:27:21 · 517 阅读 · 1 评论 -
一个很好的paper with code回顾
这个绝对是干货。Paper with code回顾转载 2021-01-01 10:31:50 · 905 阅读 · 0 评论 -
关于某个复现XLNet的广告文案
在某心培训中,最常见的一个广告就是所谓复现XLNet的。原意是,在面试一个小时中,如果你不能手打XLNet,那么你连基本功都达不到。所以换句话说,倒贴钱都没公司要你。这个广告造成极坏的影响。姑且不说,后面推荐课程课程一点帮助都没有,其实就是简单的优化理论。我们先说一下XLNet复现为啥不可能。我们先看XLNet源码。先看这个文件。自己看看多长,我记得打印出来是四十页。四十页一个小时老师能打完我都不相信,更不用说复现。再说一个更关键,大部分顶会论文不会把所有细节都放出来,比如说这段代码flags.DE原创 2021-01-01 09:37:43 · 415 阅读 · 1 评论 -
关于张量求导的事情
一般来说,矩阵求导到两个向量还能做,否则的话就没法定义了。这导致深度学习推导后向传递公示的时候,都先拉直然后在说。比如说这个CNN的推导。这里还比较幸运,还是能折腾出来的,等到RNN就不好办了。其实借用于微分几何的方法,可以定义一套很简单的办法。这套办法在这里肯定写不清楚,所以我上传到我的资料去了。最后说一下,为什么要学这个。面试在大部分实现中,AutoGrad都不太好,所以自己能写出来能大大加速。...原创 2020-12-31 09:56:54 · 287 阅读 · 0 评论 -
Colab如何从github上安装库
如果你觉得只是!pip install git+...那就中计了。虽然显示着安装成功,但是加入之前他已经安装了这个软件,那么你必须把这个卸载掉再安装。比如说,如果我运行!pip install git+https://github.com/rwbfd/jax.git@master虽然显示安装成功,但是实际上还是会用原来的jax(因为jax已经在其中装好了)。所以办法很简单!pip uninstall jax -y!pip install git+https://github.com/rwbfd/原创 2020-12-31 00:31:22 · 1154 阅读 · 1 评论 -
Object Tracking今年VOT2020 Chanllenge的结果
之前总是有人问我关注哪些公众号,其实很不幸的是,国内大部分公众号都是很旧的算法。当然有些人说,这是因为不好落地,然后给一大堆高大上的理由。这话非常侮辱人,无非就是说,看我公众号的都是些只会git clone的,新算法都看不懂的小白。可是说句实话,好多看公众号的,不见得比公众号的差,甚至比公众号高一个档次。那么这里正好最近研究到Object Tracking。这个任务相当复杂,可以看这个综述。但是好多paper都是吹牛很大,所以怎么办呢?找比赛。优先找Kaggle,因为毕竟Kaggle很多dirty tri原创 2020-12-30 16:25:10 · 669 阅读 · 0 评论 -
为什么讨厌所谓仿生AI的说法
大概关于AI最常用的说法就是AI来自于人脑科学推进了AI的发展,所以AI比传统统计学要好。这是我最讨厌的说法,而且也是最容易导致误解的。原因很简单,我们其实对人脑还不太了解。要了解人脑真实的过程,需要很侵入式的实验(还不一定能搞清楚其中机制),感兴趣的,自己去看怎么给猩猩做实验的。我们研究Neural Economics的时候,大部分也就能看个fMRA。换句话说,我们都不知道人脑具体决策,咋人工智能主要推动就是人脑了呢?另外一个更关键的,其实是motivation和效果的问题。讲个故事,当年Kolm原创 2020-12-29 20:20:33 · 282 阅读 · 1 评论 -
为什么自动驾驶不能随便写个人工规则就好
前一段时间,几位国内头部厂商号称自动驾驶专家的人物,表示自动驾驶其实很好解决,只要把物体在哪儿搞清楚,无非就是加速和方向盘而已。我就不说这些企业是什么了,总之要命的别做这种车。为什么:原因很简单,因为对应的前置任务是有限度的,并且难以提高。以Object Tracking为例,在简单的地铁中,旷世通过各种骚操作做到了80%。看起来还可以,但别忘了,公路上的物体比这个复杂的多,所以我要拍脑袋,那正常达到60%就不错了。打个不恰当的比方,我从a地走到b地,如果我眼神没问题,大部分都可以走,但如果我眼神有问题原创 2020-12-29 01:07:31 · 2391 阅读 · 5 评论 -
如何用PyTorch Lightning跑HuggingFace Transformer(TPU)
TPU本身非常擅长处理transformer类的结构,而且可以白嫖(Colab)。HuggingFace Transformer本身是Transformer结构中最重要的库。但是他们使用的是自己的trainer,API经常改变。导致如果你要加一些自己的训练trick就比较困难。所以目标是用PyTorch Lightning跑Hugging Face的Transformer。并且要求是在TPU上。代码在这里。别忘了把runtime改成TPU。注意目前来说,TPU训练还是完全没有达到很好的效果的。相比.原创 2020-12-29 00:58:15 · 1092 阅读 · 2 评论