数学建模有必要论证“合理性”吗 / 数学建模的合理性怎么写

本文探讨数学建模是否需要论证合理性,指出数学模型通常基于一定依据建立,分为绝对精准、接近精准和抽象模型三类。作者认为,模型的合理性在建立时已考虑,不需要额外论证,尤其是抽象模型,主要关注问题趋势而非精确性。对于合理性质疑,可通过前人文献支持和简化问题来解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言: 参加过一些数学建模比赛,也顺其自然地读了不少参赛论文,对“数学建模有没有必要论证合理性”这个问题发表一点拙见,欢迎捶我。

回答这个问题:数学建模没必要论证合理性。

原因如下:

  • 一般来讲,数学模型都是“有依据”地建立起来的;
  • 数学模型并非要多精准,大部分情况下,它的任务只是把问题的特征抽象出来,用于描述“趋势”;
  • 如果非要论证“合理性”,只能说明建立时“依据不足”或者独创性太强,可以考虑实证研究等手段。

接下来我们具体聊聊上述三条原因。


一般来讲,数学模型都是“有依据”地建立起来的。

为了更好地论证我的观点,不妨把数学模型分为三类:

  • 绝对精准的模型,如物理公式;
  • 接近精准的模型,如应用了物理公式的模型;
  • 抽象的模型,忽略了很多与问题不想关的因素,只把关键特征进行抽象,如绝大部分数学模型。

这三种模型都是有“依据”的,且其“依据”的权威程度呈递减趋势,但实用性和常用性呈上升趋势。


绝对精准的模型一般只有在理想的环境中才成立。之所以叫“绝对精准”,是因为其是在已有的公理、定理、人们都认可的假设之上进行数学推导得到的。

比如我们在高中物理学过的宏观力学基础:

  • 我们认可牛顿三定律(惯性定律, F = m a F=ma F=ma F = − F F=-F F=F)的存在;
  • 对牛顿三定律进行数学上的推导,便得到了许多“一定正确”的数学模型:动量定理 F t = m Δ v Ft=m\Delta v Ft=mΔv、动量守恒定理、角动量守恒定理 L = J ω L=J\omega L=Jω、动能定理 W = 1 2 m v t 2 − 1 2 m v 0 2 W=\frac{1}{2}mv_t^2-\frac{1}{2}mv_0^2 W=21mvt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值