【matlab】ode45求解二阶微分方程,绘制曲线图 | 使用函数句柄的方法

本文介绍了如何利用MATLAB的ode45函数求解二阶微分方程,并在[0,5]区间内绘制dy/dt与y的曲线图。针对方程y'' + dy/dt*exp(t) - y^2 = 5,给出初始条件y(0)=1, dy/dt(0)=-10,分别展示了m=1和m=2两种情况的数值解和图形结果。" 128175216,15097271,C++实现交互式按钮操作,"['开发语言', 'C++', '算法']
摘要由CSDN通过智能技术生成

朋友问题: 有微分方程如下:
m d 2 y d t 2 + d y d t e x p ( t ) − y 2 = 5 m \frac{d^2y}{dt^2} + \frac{dy}{dt} exp(t) - y^2 = 5 mdt2d2y+dtdyexp(t)y2=5
其中, y ( t = 0 ) = 1 y(t=0)=1 y(t=0)=1 d y / d t ( t = 0 ) = − 10 dy/dt (t=0) = -10 dy/dt(

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值