朋友问题: 有微分方程如下:
m d 2 y d t 2 + d y d t e x p ( t ) − y 2 = 5 m \frac{d^2y}{dt^2} + \frac{dy}{dt} exp(t) - y^2 = 5 mdt2d2y+dtdyexp(t)−y2=5
其中, y ( t = 0 ) = 1 y(t=0)=1 y(t=0)=1, d y / d t ( t = 0 ) = − 10 dy/dt (t=0) = -10 dy/dt(
【matlab】ode45求解二阶微分方程,绘制曲线图 | 使用函数句柄的方法
最新推荐文章于 2024-10-09 22:21:38 发布
本文介绍了如何利用MATLAB的ode45函数求解二阶微分方程,并在[0,5]区间内绘制dy/dt与y的曲线图。针对方程y'' + dy/dt*exp(t) - y^2 = 5,给出初始条件y(0)=1, dy/dt(0)=-10,分别展示了m=1和m=2两种情况的数值解和图形结果。"
128175216,15097271,C++实现交互式按钮操作,"['开发语言', 'C++', '算法']
摘要由CSDN通过智能技术生成