「管理数学基础」3.4 凸分析:最优性的充要条件、无约束极小化问题、一般非线性规划问题

本文探讨了无约束极小化问题的二阶必要和充分条件,以及一般非线性规划问题的KKT一阶必要条件。通过泰勒展开和平稳点性质证明了局部极小点的特征,并阐述了KKT条件在证明最优点中的作用。此外,强调了在实际问题中验证凸规划性质的重要性以及求解KKT点的策略。
摘要由CSDN通过智能技术生成

最优性的充要条件、无约束极小化问题、一般非线性规划问题

无约束极小化问题

定义:无约束极小化问题

分析:

  • 上面规定了无约束极小化问题的一般形式
  • 注意,平稳点(一阶导为零)未必是局部极值点

定理:二阶必要条件

分析:

  • 如果是局部极小点,那么必有什么条件
  • 在上图证明中,应用了泰勒展开和平稳点性质 ∇ f ( x ∗ ) = 0 \nabla f(x^*)=0 f(x)=0

定理:二阶充分条件

分析:

  • 如何证明是严格局部极小值
  • 该定理可以用凸函数等价条件轻松证明

一般非线性规划问题


分析:

  • 起作用的约束为积极约束(可想想象凸集中贴着边缘)
  • h h h与起作用的 g g g线性无关,则为正则点
  • 这很好理解,可以想象在空间中, x x x为了取得能取到的最优值,努力贴近约束边缘(起作用的 g g g)的样子

KKT一阶必要条件

上述是一个基本的KKT条件,其逆(如果KKT点,则是最小值点)不一定成立。

但是,如果满足以下条件(f凸、h线性、g凹),则成立。

你会发现这和拉格朗日中的约束很像。

证明:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值