前言
在2009年巴菲特给股东们的信中写道:
Investors should be skeptical of history-based models. Constructed by a nerdy-sounding priesthood using esoteric terms such as beta, gamma, sigma, and the like, these models tend to look impressive. Too often, though, investors forget to examine the assumptions behind the symbols.
这句话的大概意思就是:投资者应该对基于历史的模型保持怀疑态度。因为它们是由一些书呆子气似的人所定义的,用了一些所谓的β、γ、σ等符号来表示,看起来很高端。但,投资者们通常会忘记审视这些符号背后的条件和假设。
本案例名为《基于CAPM的股票风险和预期》,是我去年上金融分析+python课程的时候做的作业,选取了S&P500上的481个股票进行分析,最终得到结论:相比于模型计算的预期,XRX是表现最好的,HBI表现最差;而就企业特定风险(firm specific risk)而言,HON的风险最低,DUK的风险最高
优劣势
CAPM理所当然是基于历史得到的模型,但它也有一定的优劣势:
- 劣势:
- 并不完全准确,实际上任何模型都是这样
- 其基于的假设可能并不现实
- 优势:
- 尽管一些其他模型(如APM、多因子模型)可能比CAPM更好,但当涉及到估计未来预期回报时,它们的有效性会下降
- CAPM模型比其他模型需要更少的复杂的信息
- 对大多数公司来说,不同模型计算得到的预期回报差别不大
符号术语
在CAPM模型中用到两个符号:β和α
- β:一项潜在投资的β值是衡量该投资将为投资组合增加多少风险的指标
- α:其实全名为Jensen’s Alpha,是一个衡量投资组合所获得的超额回报与CAPM模型建议所得的回报相比的指标
股票绩效
分析股票的绩效前,首先得分别预测β和α
预估β值
β正如前所述,是一个给定股票的风险的度量。预估β值的回归公式如下
R j = a + β R m R_j =a+βR_m Rj=a+βRm
其中 R j R_j Rj是股票在历史上的回报, R m R_m Rm是市场的回报,回归后得到的直线的斜率也就是我们要预估的β值
当然,在预估前我们还需要有更细节的东西需要处理:
- 决定一个预估期间,如2011到2020这十年
- 决定一个回报间隔,如按每天、每周或每月计算我们所需的R值
- 计算股票的收益,即 R j = ( P r i c e E n d − P r i c e B e g i n n i n g + D i v i d e n d s P e r i o d ) / P r i c e B e g i n n i n g R_j = (Price_{End} - Price_{Beginning} + Dividends_{Period})/ Price_{Beginning} Rj=(PriceEnd−PriceBeginning+DividendsPeriod)/PriceBeginning,其中 P r i c e E n d Price_{End} PriceEnd