金融市场数据的波动性分析的案例实现_时间序列模型GARCH

GARCH模型(Generalized Autoregressive Conditional Heteroskedasticity)是一种用于时间序列分析的统计模型,它特别适用于金融市场数据的波动性分析和预测。这种模型由Bollerslev在1986年提出,是对ARCH模型的扩展,能够更灵活地描述金融时间序列的波动性特征。

一:GARCH模型的介绍

GARCH模型的核心思想是波动率随时间变化,并且当前的波动率可以通过过去的信息来预测。它通常包含两个方程:条件均值方程条件方差方程。条件均值方程描述了时间序列的均值变化,而条件方差方程则描述了波动率的变化。在GARCH模型中,波动率不仅受到过去波动率的影响,还可能受到过去残差(即新息)的影响。

3e5505ea87a14934831d2be068062521.png

GARCH(1,1)模型是一种特殊形式,因其简洁性和有效性,在金融领域中被广泛用于预测资产收益率的波动性。其中的数字1和1代表了模型中的两个关键参数:滞后阶数(p和q)。

  • 第一个1(p=1)表示在构建波动率的自回归模型时,我们考虑了1个滞后的残差平方项。也就是说,当前的波动率(方差)受到前一期残差平方的影响。
  • 第二个1(q=1)表示在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值