GARCH模型(Generalized Autoregressive Conditional Heteroskedasticity)是一种用于时间序列分析的统计模型,它特别适用于金融市场数据的波动性分析和预测。这种模型由Bollerslev在1986年提出,是对ARCH模型的扩展,能够更灵活地描述金融时间序列的波动性特征。
一:GARCH模型的介绍
GARCH模型的核心思想是波动率随时间变化,并且当前的波动率可以通过过去的信息来预测。它通常包含两个方程:条件均值方程和条件方差方程。条件均值方程描述了时间序列的均值变化,而条件方差方程则描述了波动率的变化。在GARCH模型中,波动率不仅受到过去波动率的影响,还可能受到过去残差(即新息)的影响。
GARCH(1,1)模型是一种特殊形式,因其简洁性和有效性,在金融领域中被广泛用于预测资产收益率的波动性。其中的数字1和1代表了模型中的两个关键参数:滞后阶数(p和q)。
- 第一个1(p=1)表示在构建波动率的自回归模型时,我们考虑了1个滞后的残差平方项。也就是说,当前的波动率(方差)受到前一期残差平方的影响。
- 第二个1(q=1)表示在