环境:Windows10 WSL Ubuntu 18.04.5 LTS,假设已经安装好
1、安装g++
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt update
sudo apt install g++-7 -y
2、查看版本
gcc-7 --version
或者
g++-7 --version
因为g++也是对gcc进行了封装并支持编译c++,所以这两个都同时安装上了
3、或者使用docker
docker run --rm -it -v "D:/AIHUB_workSpace/USC-courses/EE569":/usr/src/app gcc:latest /bin/bash
不过版本会有点不一样,但对小程序来说无伤大雅
如果还需要使用安装在Windows下的其他库,如E盘的opencv,理论上是不行的,因为OpenCV在不同的平台有不同版本,Ubuntu下的g++不能使用安装Windows版的OpenCV,因此需要自己编译,我目前没有找到既有G++合适版本且有Opencv的docker image
编译OpenCV
- 在docker container里安装依赖
apt-get -y update
apt-get -y upgrade
apt-get -y install build-essential
apt-get -y install build-essential cmake
apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libatlas-base-dev gfortran libgtk2.0-dev libjpeg-dev libpng-dev
- 在https://opencv.org/releases/下载sources,移动到container里,根据我的情况,可以先放在D:/AIHUB_workSpace/USC-courses/EE569,然后在docker里将其mv到/usr/src下
- 解压,进入该文件夹
- 创建mkdir build,移动cd build
- 开始编译,中间这个命令(make -j8)我花了大概半小时,挺耗费时间,因此一开始启动container的时候最好不要用–rm,不然stop container后会自动删除这个container,下次还得重新编译
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8
make install
这步完成后,无需任何配置,现在应该能够在/usr/local/include/opencv4/下找到源码,并且/usr/local/lib下找到lib文件
再加一句完成opencv的安装
echo /usr/local/lib >> /etc/ld.so.conf.d/opencv.conf
ldconfig # 更新系统的共享链接库
这样编译时则可用-I添加Opencv的include path,-L添加lib路径,-l添加lib文件,即可完成,当然-l具体需要加什么lib文件,根据自己需求去加即可,我这里只用了cv::mat和cv::createCLAHE,则只需要opencv_core和opencv_imgproc,opencv_imgcodecs用来读写image,opencv_photo用于调用fastNlMeansDenoising算法
g++ -o main readraw.cpp utils.cpp -I /usr/local/include/opencv4/ -L /usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_imgcodecs -lopencv_photo
这是我用的installOpenCV.sh文件,直接./installOpenCV.sh即可完成以上步骤
cd /usr/src
apt-get -y update
apt-get -y upgrade
apt-get -y install build-essential
apt-get -y install build-essential cmake
apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libatlas-base-dev gfortran libgtk2.0-dev libjpeg-dev libpng-dev
# download opencv_contrib for xfeatures2d module
git clone https://github.com/opencv/opencv_contrib.git
# download zip
curl https://codeload.github.com/opencv/opencv/zip/refs/tags/4.7.0 -o opencv-4.7.0.zip
unzip opencv-4.7.0.zip
rm opencv-4.7.0.zip
cd opencv-4.7.0
mkdir build
cd build
cmake -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8
make install
注:上面的script还加了opencv_contrib,为了使用xfeatures2d contrib module,比如SURF算法就需要该module
4、C/C++编译流程(四步)
- 预处理(preprocessor):将hello.h头文件和hello.c主文件根据需要放在同一个文件hello.i
- 编译(compiler):将hello.i编译成汇编语言存放至hello.s
- 汇编(assembler):将hello.s汇编成机器语言至hello.obj/hello.o
- 链接(linker):将hello.obj/hello.o和其他库文件链接到一起,得到可执行文件hello.exe/hello.out
5、编译,简单示例
hello.cpp
#include <iostream> // <> 表示到标准包含目录下找此库
#include "hello.h" // "" 表示到标准包含目录以及-I指定目录下找
// 因此 hello.h不能用<>,不然找不到
// 而iostream既能用<>,也能用""
using namespace std;
int main()
{
int a = 13, b = 22;
cout << "Sum is: "
<< sumOfTwoNumbers(a, b)
<< endl;
}
同目录下的hello.h文件
int sumOfTwoNumbers(int a, int b)
{
return (a + b);
}
编译
g++ hello.cpp
会直接得到一个a.out文件,用./a.out便可运行。
如果使用
g++ -S hello.cpp
则会得到hello.s,即汇编语言文件
若用
g++ -c hello.cpp
则会得到hello.o这个目标文件,但此文件不可执行
若用
g++ -o main.exe hello.cpp
则会得到main.exe可执行文件,和之前得到的a.out是一样的,都可以直接用./main.exe或者./a.out执行。一般情况下,“.out”是基于 Unix 的系统(例如 Linux 和 macOS)上可执行文件的常用文件扩展名,而“.exe”是 Windows 上可执行文件常用的文件扩展名。但我用的是前面的docker来使用g++,此虚拟环境的操作系统是Debian GNU/Linux 11,也可以执行.exe,这是因为“.exe”文件扩展名仅指文件格式,并不表示该文件适用的底层操作系统或体系结构。
并且你可以将可执行文件输出为任意后缀,并不影响文件的执行,因为可执行文件的判定并不是根据后缀决定的。例如
g++ -o main.xasxasdx hello.cpp
仍然可以得到如下结果
root@2b8e15b8a6e9:/usr/src/app# ./main.xasxasdx
Sum is: 35
6、总结
前面的所有中间文件,均可被保存下载
g++ -save-temps -o main hello.cpp
这样会得到
main main-hello.ii main-hello.o main-hello.s
其中main是二进制可执行文件(无需后缀),main-hello.ii main-hello.o main-hello.s分别是预处理文件,二进制目标文件,汇编文件
流程是hello.cpp -> main-hello.ii -> main-hello.s -> main-hello.o -> main
当然也可以分别运行得到各中间文件
# 仅得到预处理文件main.i
g++ -E -o main.i hello.cpp
# 仅得到汇编文件main.s
g++ -S -o main.s hello.cpp
# 仅得到目标文件main.o
g++ -c -o main.o hello.cpp
# 仅得到可执行文件main.o
g++ -o main.o hello.cpp
# 得到所有中间文件及可执行文件main.o
g++ -save-temps -o main.o hello.cpp
7、多文件情况
hello.cpp
#include "hello.h"
#include <iostream>
int main()
{
std::cout << "Hello main\n";
helloWorld();
return 0;
}
hello.h
void helloWorld();
将helloWorld函数实现在另一个cpp中: helloWorld.cpp
#include <iostream>
void helloWorld()
{
std::cout << "Hello World\n";
}
将两个cpp一起编译
g++ -o main.o hello.cpp helloWorld.cpp
运行./main.o则得到如下
root@2b8e15b8a6e9:/usr/src/app# ./main.o
Hello main
Hello World