MSMD-Net: Deep Stereo Matching with Multi-scale and Multi-dimension Cost Volume

MSMD-Net结合多尺度和多维度成本体,通过3D扭曲相关体进行残差学习,提高了立体匹配的精度和泛化能力。通过切换训练策略缓解过拟合,特征提取和几何引导的视差细化增强了网络性能。
摘要由CSDN通过智能技术生成

paper

Abstract
在多尺度层面上,以不同尺度生成四个4D组合体,并将它们与编解码器过程相结合来预测初始视差估计。
在多维层次上,构造了一个3D扭曲相关体(3D warped correlation volume),并利用它对初始视差图进行残差学习。
这两个维度的代价是相辅相成的,可以提高视差估计的性能。此外还提出了一种切换训练策略,以缓解预训练过程中出现的过拟合问题,进一步提高最终视差估计的泛化能力和精度。

Motivation
实际场景不仅需要具有最先进性能的方法,还需要实时速度和跨领域泛化,现有方法不能在这些需求中得到很好的均衡。
MSMD的优势:高精度,高效率,强泛化能力(仅在sf上训练后直接测试kitti错误率更低)。

Core idea
MSMD-Net由三部分组成:特征提取,提取多尺度特征用于后续成本量构建;代价体积集成,用于融合4D多尺度成本量生成初始视差值;几何引导视差细化,利用立体视觉几何信息构造三维扭曲代价体积来细化初始视差。这两个维度的代价体积是互补的,可以提高差异估计的性能和泛化。
在这里插入图片描述

在以往的工作中,主要依靠网络自动学习输入信息和残差之间的映射,而不使用立体视觉的几何结构。相比之下,我们提出了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值